有機化學

D 1. What term describes the structural relationship between (E)- and (Z)- 2-pentene?

(A)not isomers (B)constitutional isomers (C)enantiomers (D)diastereomers (E) conformers

- E 2.What term describes the structural relationship between (1S,3R)-1,3-di-chlorocyclopentane and (1R,3S)-1,3-dichlorocyclopentane?
 - (A)not isomers (B)constitutional isomers (C)enantiomers
 - (D) diastereomers (E) the same compound
- E 3. Which of the following incorrectly describes <u>cis</u>-1,2-dimethylcyclopentane?
 - (A) It is a meso compound. (B) It is achiral. (C) It contains two asymmetric carbons.
 - (D) It's diastereomer is trans-1,2-dimethylcyclopentane. (E) It has an enantiomer.
- A 4.Which of the following configurations corresponds to the structure below?

CH(CH₃)₂

- (A)4R,5R (B)4R,5S (C)2R,3R (D)2S,3S (E)1R,2R
- C 5. The relationship between I and II is :

(A)same compound (B)enantiomers (C)diastereomers (D)constitutional isomers (E)conformers

D 6.A student measured the optical activity of an unknown sugar at two different concentrations. The results of his measurements are shown below. Given that the sample cell had a path length of 10.0 cm. Calculate the specific rotation for the unknown sugar. (Hint: consider each measurement of

plane polarized light has a true reading and a "ghost" reading 180° from the true reading.)

concentration	observed rotation
2.00g sugar in 10.0mL water	+159.1°
5.00g sugar in 10.0mL water	+127.8°

(A) -10.5° (B) $+25.6^{\circ}$ (C) $+79.5^{\circ}$ (D) -105° (E) $+256^{\circ}$

- E 7.Which of the compounds below undergoes solvolysis in aqueous ethanol most rapidly? (A)cyclohexyl bromide (B)methyl iodide (C)isopropyl chloride (D)3-choloropentane (E)3-iodo-3-methylpentane
- E 8.What type of intermediate is present in the $S_N 2$ reaction of cyanide with bromoethane? (A)carbocation (B)free radical (C)carbine (D)carbanion (E)this reaction has no intermediate in the second seco
- (A)carbocation (B)free radical (C)carbine (D)carbanion (E)this reaction has no intermediate A 9.A sample of 1-chloro-1-phenylethane with an $[\alpha]_0^{2^5}$ of -94.8° is reacted with NH₃ in methanol/ water solvent. The major substitution product of the reaction is 1-phenyl-1-ethanamine with an $[\alpha]_0^{2^5}$ of -8.6° . Given that optically pure (R)-1-chloro-1-phenylethane has a specific rotation of -109.0° and that optically pure (R)-1-phenyl-1-ethanamine has a specific rotation of $+39.3^{\circ}$.

GI = 109.0 and that optically pure (R)-1-phenyl-1-ethanamine has a specific rotation GI = 39.3. Which of the following statements best describes this reaction? (A)Net inversion 25% with 75% racemization – S_N1 mechanism (B)Net inversion 12% with 88% racemization – S_N1 mechanism

3 - 1

(C)Net inversion 75% with 25% racemization – $S_N 2$ mechanism	
(D)Net inversion 12% with 88% racemization – $S_N 2$ mechanism	
(E)None of the following is true for the initiation step of a free radical oblighted reaction?	
A 10. which of the following is true for the initiation step of a free radical emotimation reaction: $(\Delta)\Box H^\circ > 0$ and $\Box S^\circ > 0$ (B) $\Box H^\circ > 0$ and $\Box S^\circ > 0$ (C) $\Box H^\circ < 0$ and $\Box S^\circ > 0$	
$(\mathbf{A}) \square \mathbf{H} > 0 \text{ and } \square \mathbf{S} > 0 (\mathbf{B}) \square \mathbf{H} > 0 \text{ and } \square \mathbf{S} < 0 (\mathbf{C}) \square \mathbf{H} < 0 \text{ and } \square \mathbf{S} > 0$	
(D) $\Box H^{\circ} < 0 \text{ and } \Box S^{\circ} < 0$ (E) $\Box H^{\circ} = 0 \text{ and } \Box S^{\circ} = 0$	
A 11.Consider the reaction of A being converted into B at 25° C. If the $\Box G^{\circ}$ of this reaction is + 1.0	
Kcal/mol, the % conversion is	
(A)15% (B)30% (C)50% (D)/0% (E)84% D 12 Decision the major arguing and but that result when 2.2.4 trimethal contains is subjected to fine	
radical bromination?	
(A)1-Bromo-2,4,4-trimethylpentane (B)2-Bromo-2,4,4,-trimethylpentane	
(C)3-Bromo-2,2,4-trimethylpentane (D)4-Bromo-2,2,4-trimethylpentane	
(E)3-Bromo-2-methylhexane	
A 13. Which of the following reactive intermediate species maintains sp ³ hybridization?	
(A)methyl carbanion (B)dibromocarbene (C)tertiary carbocation	
(D) secondary arry radical (E)(B) and (C) F = 14 According to the Lewis definition of the following may act as acids?	
(A)NH ₃ (B)HCl (C)AlCl ₃ (D)A and B (E)A, B, and C	
B 15. Which of the following is a bridged bicyclic alkane?	
(A) <u>cis</u> -decaline (B)bicycle [2,2,1] heptane (C)bicyclo [3,2,0] heptane	
(D)bicycle [4,1,0] heptane (E)none of the above	
C 16. Which of the following correctly lists the conformations of cyclohexane in order of increasing	
energy?	
(A) chair < boat < twist boat < hair - chair (B) chair < twist boat < bair < boat < chair (C) chair < twist boat < boat < bair < boat < bair < boat	
(C) chain $<$ twist boat $<$ boat $<$ chain $-$ chain $<$ twist boat $<$ nan-chain $<$ boat $<$ (F) half-chain $<$ twist boat $<$ chair	
B 17. Which has the greatest molar heat of combustion?	
B 17. Which has the greatest molar heat of combustion? (A) <u>trans</u> -1,2-dimethylcyclopentane (B) <u>cis</u> -1,2-dimethylcyclopentane	
B 17. Which has the greatest molar heat of combustion? (A) <u>trans</u> -1,2-dimethylcyclopentane (B) <u>cis</u> -1,2-dimethylcyclopentane (C) <u>trans</u> -1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane	
 B 17. Which has the greatest molar heat of combustion? (A)<u>trans</u>-1,2-dimethylcyclopentane (B)<u>cis</u>-1,2-dimethylcyclopentane (C)<u>trans</u>-1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane C 18. Which of the following difluorocyclohexane isomers has the greatest molecular dipole in its least 	
 B 17. Which has the greatest molar heat of combustion? (A)<u>trans</u>-1,2-dimethylcyclopentane (B)<u>cis</u>-1,2-dimethylcyclopentane (C)<u>trans</u>-1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane (E)cyclohe	
 B 17. Which has the greatest molar heat of combustion? (A)<u>trans</u>-1,2-dimethylcyclopentane (B)<u>cis</u>-1,2-dimethylcyclopentane (C)<u>trans</u>-1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane (E)cyclohe	
 B 17. Which has the greatest molar heat of combustion? (A)<u>trans</u>-1,2-dimethylcyclopentane (B)<u>cis</u>-1,2-dimethylcyclopentane (C)<u>trans</u>-1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane C 18. Which of the following difluorocyclohexane isomers has the greatest molecular dipole in its least stable chair conformation? (A)<u>trans</u>-1,2-difluorocyclohexane (B) <u>cis</u>-1,2-difluorocyclohexane (C)<u>cis</u>-1,3-difluorocyclohexane (D)<u>trans</u>-1,3-difluorocyclohexane (E)trans-1 4-difluorocyclohexane 	
 B 17.Which has the greatest molar heat of combustion? (A)<u>trans</u>-1,2-dimethylcyclopentane (B)<u>cis</u>-1,2-dimethylcyclopentane (C)<u>trans</u>-1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane C 18.Which of the following difluorocyclohexane isomers has the greatest molecular dipole in its least stable chair conformation? (A)<u>trans</u>-1,2-difluorocyclohexane (B) <u>cis</u>-1,2-difluorocyclohexane (C)<u>cis</u>-1,3-difluorocyclohexane (D)<u>trans</u>-1,3-difluorocyclohexane (E)<u>trans</u>-1,4-difluorocyclohexane A 19.Which of the following compounds does not proceed E₂ reaction smoothly under the condition of 	
 B 17.Which has the greatest molar heat of combustion? (A)<u>trans</u>-1,2-dimethylcyclopentane (B)<u>cis</u>-1,2-dimethylcyclopentane (C)<u>trans</u>-1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane C 18.Which of the following difluorocyclohexane isomers has the greatest molecular dipole in its least stable chair conformation? (A)<u>trans</u>-1,2-difluorocyclohexane (B) <u>cis</u>-1,2-difluorocyclohexane (C)<u>cis</u>-1,3-difluorocyclohexane (D)<u>trans</u>-1,3-difluorocyclohexane (E)<u>trans</u>-1,4-difluorocyclohexane A 19.Which of the following compounds does not proceed E₂ reaction smoothly under the condition of CH₃ONa/CH₃OH? 	
 B 17. Which has the greatest molar heat of combustion? (A)<u>trans</u>-1,2-dimethylcyclopentane (B)<u>cis</u>-1,2-dimethylcyclopentane (C)<u>trans</u>-1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane C 18. Which of the following difluorocyclohexane isomers has the greatest molecular dipole in its least stable chair conformation? (A)<u>trans</u>-1,2-difluorocyclohexane (B) <u>cis</u>-1,2-difluorocyclohexane (C)<u>cis</u>-1,3-difluorocyclohexane (D)<u>trans</u>-1,3-difluorocyclohexane (C)<u>cis</u>-1,3-difluorocyclohexane (D)<u>trans</u>-1,3-difluorocyclohexane (E)<u>trans</u>-1,4-difluorocyclohexane A 19. Which of the following compounds does not proceed E₂ reaction smoothly under the condition of CH₃ONa/CH₃OH? 	
 B 17. Which has the greatest molar heat of combustion? (A)<u>trans</u>-1,2-dimethylcyclopentane (B)<u>cis</u>-1,2-dimethylcyclopentane (C)<u>trans</u>-1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane C 18. Which of the following difluorocyclohexane isomers has the greatest molecular dipole in its least stable chair conformation? (A)<u>trans</u>-1,2-difluorocyclohexane (B) <u>cis</u>-1,2-difluorocyclohexane (C)<u>cis</u>-1,3-difluorocyclohexane (D)<u>trans</u>-1,3-difluorocyclohexane (C)<u>cis</u>-1,3-difluorocyclohexane (D)<u>trans</u>-1,3-difluorocyclohexane (E)<u>trans</u>-1,4-difluorocyclohexane A 19. Which of the following compounds does not proceed E₂ reaction smoothly under the condition of CH₃ONa/CH₃OH? (A) H H CH₃ (B) H CH₃ (C) CH₃ H H (C) CH₃ (C) (
 B 17. Which has the greatest molar heat of combustion? (A)<u>trans</u>-1,2-dimethylcyclopentane (B)<u>cis</u>-1,2-dimethylcyclopentane (C)<u>trans</u>-1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane C 18. Which of the following difluorocyclohexane isomers has the greatest molecular dipole in its least stable chair conformation? (A)<u>trans</u>-1,2-difluorocyclohexane (B) <u>cis</u>-1,2-difluorocyclohexane (C)<u>cis</u>-1,3-difluorocyclohexane (D)<u>trans</u>-1,3-difluorocyclohexane (D)<u>trans</u>-1,3-difluorocyclohexane (E)<u>trans</u>-1,4-difluorocyclohexane A 19. Which of the following compounds does not proceed E₂ reaction smoothly under the condition of CH₃ONa/CH₃OH? (A) <u>H</u> <u>H</u> (C) <u>H</u> <u>H</u> (C) <u>H</u> <u>H</u> <u>H</u> (C) <u>H</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u> (C) <u>H</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u>	
B 17. Which has the greatest molar heat of combustion? (A) <u>trans</u> -1,2-dimethylcyclopentane (B) <u>cis</u> -1,2-dimethylcyclopentane (C) <u>trans</u> -1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane C 18. Which of the following difluorocyclohexane isomers has the greatest molecular dipole in its least stable chair conformation? (A) <u>trans</u> -1,2-difluorocyclohexane (B) <u>cis</u> -1,2-difluorocyclohexane (C) <u>cis</u> -1,3-difluorocyclohexane (D) <u>trans</u> -1,3-difluorocyclohexane (C) <u>cis</u> -1,3-difluorocyclohexane (D) <u>trans</u> -1,3-difluorocyclohexane (E) <u>trans</u> -1,4-difluorocyclohexane (E) <u>trans</u> -1,4-difluorocyclohexane A 19. Which of the following compounds does not proceed E ₂ reaction smoothly under the condition of CH ₃ ONa/CH ₃ OH? (A) $\downarrow \downarrow \downarrow \downarrow$ H (A) $\downarrow \downarrow \downarrow$ H (B) $\downarrow \downarrow \downarrow$ H (C) $\downarrow \downarrow$ H (C) $\downarrow \downarrow$ H (C) $\downarrow \downarrow$ H (C) \downarrow H (C	
B 17. Which has the greatest molar heat of combustion? (A) <u>trans</u> -1,2-dimethylcyclopentane (B) <u>cis</u> -1,2-dimethylcyclopentane (C) <u>trans</u> -1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane C 18. Which of the following difluorocyclohexane isomers has the greatest molecular dipole in its least stable chair conformation? (A) <u>trans</u> -1,2-difluorocyclohexane (B) <u>cis</u> -1,2-difluorocyclohexane (C) <u>cis</u> -1,3-difluorocyclohexane (D) <u>trans</u> -1,3-difluorocyclohexane (C) <u>cis</u> -1,3-difluorocyclohexane (D) <u>trans</u> -1,3-difluorocyclohexane (E) <u>trans</u> -1,4-difluorocyclohexane (E) <u>trans</u> -1,4-difluorocyclohexane A 19. Which of the following compounds does not proceed E ₂ reaction smoothly under the condition of CH ₃ ONa/CH ₃ OH? (A) $\stackrel{H}{\longrightarrow}_{H} \stackrel{H}{\longrightarrow}_{CH_3}$ (B) $\stackrel{H}{\longrightarrow}_{CH_3} \stackrel{CH_3}{\longrightarrow}_{H}$ (C) $\stackrel{CH_3}{\longrightarrow}_{CH_3} \stackrel{H}{\longrightarrow}_{H}$ (D) $\stackrel{H}{\longrightarrow}_{CH_3} \stackrel{CH_3}{\longrightarrow}_{H}$ (D) $\stackrel{CH_3}{\longrightarrow}_{CH_3} \stackrel{H}{\longrightarrow}_{H}$ (D) $\stackrel{H}{\longrightarrow}_{CH_3} \stackrel{CH_3}{\longrightarrow}_{H}$ (D) $\stackrel{CH_3}{\longrightarrow}_{H}$ (D)	
 B 17. Which has the greatest molar heat of combustion? (A)<u>trans</u>-1,2-dimethylcyclopentane (B)<u>cis</u>-1,2-dimethylcyclopentane (C)<u>trans</u>-1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane C 18. Which of the following difluorocyclohexane isomers has the greatest molecular dipole in its least stable chair conformation? (A)<u>trans</u>-1,2-difluorocyclohexane (B) <u>cis</u>-1,2-difluorocyclohexane (C)<u>cis</u>-1,3-difluorocyclohexane (D)<u>trans</u>-1,3-difluorocyclohexane (C)<u>cis</u>-1,3-difluorocyclohexane (D)<u>trans</u>-1,3-difluorocyclohexane (E)<u>trans</u>-1,4-difluorocyclohexane A 19. Which of the following compounds does not proceed E₂ reaction smoothly under the condition of CH₃ONa/CH₃OH? (A) <u>H</u> <u>H</u> CH₃ (B) <u>H</u> CH₃ <u>H</u> (C) <u>CH₃ <u>H</u> H</u> (CH₃ <u>H</u> (E)None of the above 	
B 17. Which has the greatest molar boar for the form of the form of the form of the form of the following difluorocyclohexane (B)cis-1,2-dimethylcyclopentane (C)trans-1,3-dimethylcyclopentane (D)methylcyclohexane (E)cycloheptane C 18. Which of the following difluorocyclohexane isomers has the greatest molecular dipole in its least stable chair conformation? (A)trans-1,2-difluorocyclohexane (B) cis-1,2-difluorocyclohexane (C)cis-1,3-difluorocyclohexane (D)trans-1,3-difluorocyclohexane (C)cis-1,3-difluorocyclohexane (D)trans-1,3-difluorocyclohexane (E)trans-1,4-difluorocyclohexane (D)trans-1,3-difluorocyclohexane (D)trans-1,4-difluorocyclohexane (D)tr	
B 17. Which has the greatest molar boar boar form (A) trans-1,2-dimethylcyclopentane (B) <u>cis</u> -1,2-dimethylcyclopentane (C) trans-1,3-dimethylcyclopentane (D) methylcyclohexane (E) cycloheptane C 18. Which of the following difluorocyclohexane isomers has the greatest molecular dipole in its least stable chair conformation? (A) trans-1,2-difluorocyclohexane (B) <u>cis</u> -1,2-difluorocyclohexane (C) <u>cis</u> -1,3-difluorocyclohexane (D) trans-1,3-difluorocyclohexane (C) <u>cis</u> -1,3-difluorocyclohexane (D) trans-1,3-difluorocyclohexane (E) trans-1,4-difluorocyclohexane (E) trans-1,4-difluorocyclohexane (E) trans-1,4-difluorocyclohexane (E) trans-1,4-difluorocyclohexane (A) 9. Which of the following compounds does not proceed E ₂ reaction smoothly under the condition of CH ₃ ONa/CH ₃ OH? (A) $\downarrow \downarrow \downarrow \downarrow \downarrow$ H (C) $\downarrow \downarrow \downarrow \downarrow$ H (C) $\downarrow \downarrow \downarrow$ H (C) $\downarrow \downarrow \downarrow$ H (C) $\downarrow \downarrow$ H (D) $\downarrow \downarrow \downarrow$ H (E) None of the above H (D) $\downarrow \downarrow$ H (E) None of the above H (D) $\downarrow \downarrow$ H (E) None of the above H (D) $\downarrow \downarrow$ H (E) None of the above (D) $\downarrow \downarrow$ H (E) N (D) $\downarrow \downarrow$ H (E) N (D) \downarrow H	

C 21.The product of the following reaction will be?

B 22.If the Fischer projection below is to represent (2R,3R)-2,3-dibromo-pentane, the identities of A-D must be as follows:

C 23. Which compound has the highest solubility in water? (A)1-chlorohexane (B)1-hexane (C)1-hexanol (D)dipropyl ether (E)2-hexanone

A 24.Which compound is the most stable?

(A)cis-1,3-dimethylcyclohexane (B)trans-1,3-dimethylcyclohexane

(C)cis-1,4-dimethylcyclohexane (D)trans-1,2-dimethylcyclohexane

(E)1,1-dimethylchyclohexane

D 25.What is the major product of the light-initiated reaction of 2-pentene with N-bromosuccinimide? (A)1-bromo-2-pentene (B)2-bromo-2-pentene (C)3-bromo-2-penene

(D)4-bromo-2-pentene (E)3-bromo-1-pentene

A 26.Which of the following carbocations is most stable?

A 27.Monochlorination of 2-methylbutane leads to four different isomers. What is the relative reactivity of primary, secondary, and tertiary hydrogens?

(A)1:4:5 (B)9:12:8 (C)7:6:4 (D)7:18:12 (E)None of the above D 28. Among the following statements about the family of cyclohexane, which one is incorrect? (A)substitutent tends to occupy the equatorial position in order to avoid the 1,3-diaxal interactions. (B)Conformational flipping of cyclohexane at room temperature is fast and interconverts axial and equatorial hydrogens. (C)The chair form is energecally more stable than the twist-boat form. (D)cis-1,2-dimethylcyclohexane is optically inactive because it has a plane of symmetry (σ) (E)None of the above D 29. Which reaction would you expect to have he smallest energy of activation? $(A)CH_4 + \Box F \rightarrow \Box CH_2 + HF$ $(B)CH_4 + \Box B F \rightarrow \Box CH_2 + HBr$ $(C)CH_4 + \Box C I \rightarrow \Box CH_2 + HCI$ $(D)\Box CH_3 + \Box Cl \rightarrow CH_3Cl \quad (E)Cl_2 \rightarrow \Box Cl + Cl\Box$ B 30.Arrange the following compounds in order of reactivity toward S_N2 displacement I. 1-bromo-2, 2-dimethylpropane II. 1-bromobutane III. 1-bromo-2-methylbutane IV. 1-bromo-3-methylbutane $(A)I > II > III > IV \quad (B)II > IV > III > I \quad (C)III > II > IV > I$ $(D)II > III > IV > I \quad (E)III > IV > I > II$ C 31. The c-c bond length in butane is approximately (B)1.33A° (C)1.54A° (D)1.20A° $(A)1.09 A^{\circ}$ (E)1.40A° E 32.In the chlorination of methane, the propagation steps involve forming: (A)hydrogen radicals (B)methyl radicals (C)chlorine radicals (D)A, B, and C (E)B and C C 33. What statement does not apply to the boiling points of alkanes? (A)The boiling point increases as the length of the carbon chain increases. (B)Straight chain alkanes have a higher boiling point than their branched isomers. (C)The boiling point are influenced by hydrogen bonding. (D)The boiling point are influenced by London dispersion forces. (E)Because they are nonpolar, alkanes have lower boiling points than othe organic compounds of similar molar mass. D 34. Which statement is true for $S_N 2$ reactions? (A)The rate of the reaction is dependent on the stability of a carbocation. (B)The rate of the reaction is dependent on just the substrate. (C)Displacement occurs with inversion of configuration. (D)The fastest reaction will occur with tertiary halide. (E)The mechanism is a two step process. D 35.Enantiomers may differ in the following property: (A)boiling point (B)melting point (C)solubility in water (D)the rate at which they react with a chiral reagent (E)number of degree they rotate plane polarized light E 36. Which of the following reaction does not proceed via a carbocation intermediate? (A)Solvolysis of tert-butyl bromide in CH₃OH (B)Electrophilic addition of isobutylene with HBr (C)Dehydration of cyclohexanol with H₂SO₄

- (D)Electrophilic substitution of benzene with Br₂ in the presence of FeBr₃
- (E)All of the above

2010 建國後西醫考前必讀精選題

B 37.About S_N2 reaction, Which of the following description is less appropriate?

(A)the reaction pursues faster in aprotic solvent than the protic ones.

(B)the reaction pursues faster in nonpolar solvent than the polar ones.

(C)the reaction pursues faster in acetonitrile than in methanol

(D)the reaction involves a bimolecular rate-determining step.

(E)None of these

C 38. About crown ether, which of the following description is less appropriate?

(A)was first discovered by Pedersen

(B)can complex to alkali metal ions

(C)generally are acyclic compounds

(D)is quite useful in organic synthesis

(E)All of the above

A 39. Which compound is the major component in natural gas?

(A)methane (B)ethane (C)ethyne (D)nitrogen (E)2,2,-4-trimethylpentane

A 40. Which reaction is good to prepare tert-butyl methyl ether?

 $(A)(CH_3)_3COK + CH_3I$ $(B)(CH_3)_3CK + CH_3OH$ $(B)(CH_3)_3CI + CH_3ONa$

 $(D)(CH_3)_3COH + CH_3ONa$ $(E)(CH_3)_3COH + CH_3OH and H^+$

B 41.For $S_N 1/E1$ reactions, which of the following statements is incorrect?

(A)The $S_N 1/E1$ reactions proceed through the same carbocation intermediate.

- (B)For a given secondary alkyl bromide in water, lower the temperature favors the S_N1 product.
- (C)The following S_N1 reaction will give a racemic product.

(D)For E_1 product, the most substituted alkene normally is the major one.

(E)None of these

D 42. Which of the following statements is correct?

- (A)Among the tripeptides formed by the combinations of glycine, and valine, there are 4 meso compounds.
- (B)The α and β -anomers of glucose are a pair enantiomer.

(C) α -Anomer of glucose is more stable than β -anomers in water.

(D) α -Anomer of glucose is more stable than β -anomers in nonpolar solvent

D 43. Which of the following amino acid contains a mercaptan group?

(A)Valine (B)Aspartic acid (C)Tyrosine (D)Cystenine (D)Arginine

C 44. Which of the following statements on nucleophilic substitution reaction is false?

(A)primary alkyl halides reacts slower than the corresponding secondary substrates in the $S_N l$ reaction.

(B)The rate of reaction depends on the nature of the leaving group in both $S_{\rm N}1$ and $S_{\rm N}2$ reactions.

(C)In the $S_{\rm N}{\rm l}$ reaction, a carbocation transition state is formed.

(D)In the reaction of CH_3I with $(CH_3)_2NH$, the rate in ethanol solvent is slower than that in hexane. (E)Compound A reacts faster by the S_N2 mechanism than the compound B.

3 - 5

B 45.For 1,3-dichloro-1,2-propadiene

(A)it is achiral molecule (B)it has stereocenters (C)it has chiral centers

(D)it has (E)- and (Z)- isomers (E)it has diastereomers

C 46. The number of units of unsaturation (degree of unsaturation) in a molecule $C_3H_4CINO_2$ is

(A)0 (B)1 (C)2 (D)3 (E)4

E 47.In Which of the solvents below would the reaction shown take place at the fastest rate?

 $CH_3CH_2CH_2CH_2Br + NaCN \longrightarrow CH_3CH_2CH_2CH_2CN + NaBr$

(A)ethanol (B)benzene (C) water (D)dimethyl sulfoxide (E)acetonitrile

C 48.Consider the reaction of each of the following with 1-bromopentane. Which one would have the highest elimination/substitution ratio?

(A)CH₃CH₂ONa, CH₃CH₂OH, 55°C (B) NaSH, ethanol, H₂O, 25°C

 $(C)(CH_3)$, COK, (CH_3) , COH, 55°C (D)KCN, DMSO, 40°C (E) (CH_3) , N, DMSO, 0°C

E 49. The species shown represents the transition state for the:

CH₂CH₃

$$H_2^{\delta^+}O \xrightarrow{I} H^{\mu} Br^{\delta^-}$$

(A)reaction of 1-propanol with HBr (B)reaction of 1-bromopropane with OH-

(C)addition of HOBr to 1-propene (D)addition of H_2SO_4 / NaBr to 1-propanol

(E)A and D

B 50. Which of the following species forms the strongest ion-dipole attraction with 18-crown-6?

(A) F^{-} (B) K^{+} (C) $Cr_2O_7^{2-}$ (D) Li^{+} (E) Br_2

B 51. Which one of the following is a diastereomer of (R)-4-bromo-cis-2-hexene?

(A)(S)-4-bromo-<u>cis</u>-2-hexene (B)(R)-4-bropmo-<u>trans</u>-2-hexene (C)(S)-1-bromo-<u>cis</u>-2-hexene (D)(R)-5-bromo-<u>cis</u>-2-hexene (E)(S)-5-bromo-<u>cis</u>-2-hexene

D 52. How many stereoisomers are there of D-fructose (including D-fructose)?

(A)2 (B)4 (C)6 (D)8 (E)16

B 53.Which statements about acid-base equilibra are true?

I .The pKa is the negative log of the acid equilibra constant.

 ${\rm I\!I}$. A stronger acid has a pKa with a smaller value than a weaker acid.

III .A stronger base has a conjugate acid which has a pKa with a smaller value than a weaker base. IV. The Ka=K[HA]

 $(A) I, \blacksquare (B) I, \blacksquare (C) I, \blacksquare, \blacksquare (D) \blacksquare, \blacksquare, ℕ (E) I, \blacksquare, \blacksquare, ℕ$

D 54. Which of the following properties are not identical for constitutional isomers?

I .molecular formula

Ⅱ.molecular weight

Ⅲ.order of attachment of atoms

IV.physical properties

 $(A) I , IV \quad (B) \amalg , \amalg \quad (C) I , \amalg \quad (D) \amalg , IV \quad (E) I , \amalg , IV$

C 55.In the most stable conformation of trans –1, 4-dimethylcyclohexane, what positions do the methyl groups occupy?

(A)axial, axial (B)equatorial, axial (C)equatorial, equatorial (D)axial, equatorial C 56. Which is the correct name for the following compound ?

(A)1, 3 – dimethylcyclohexene (B)2, 4 - dimethylcyclohexene

(C)3, 5 – dimethylcyclohexene (D)2, 4 – dimethyl – 1 – cyclohexene

B 57. How many trans isomers are there for an alkene with the formula, C₄H₇Cl?

(A)2 (B)3 (C)4 (D)6 (E)8 C 58.Which alkenes have E configurations?

C 73.Arrange the compounds in order of increasing solubility in water (least first) I. CH₃CH₂CH₂CH₂OCH₃ II. CH₃OCH₃

 $III.\ CH_3OCH_2CH_2OCH_3 \quad IV.\ CH_3CH_2CH_2CH_2CH_2OH$

(A)I , III, II, IV (B)III, I, IV, II (C)I, IV, II, III (D)IV, I, III, II (E)I, IV, III, II A 74. Arrange the compounds in the order of increasing acidity (least first)

I. CH₃CH₂OH II. CH₃CH₂SH III. H₂S IV. H₂O

(A)I, IV, II, III (B)II, I, III, IV (C)III, II, I, IV (D)II, I, IV, III (E)II, III, I, IV E 75. Arrange the compounds in the order of increasing boiling point (lowest first)

I.CH₃OCH₃ II. H₂O III. CH₃CH₂OH IV CH₃CH₂SH

(A)II, I, III, IV (B)I, IV, II, III (C)IV, I, III, II (D)I, III, IV, II (E)I, IV, III, II B 76. Which reagents do not effect the following conversion?

I. HCl / ZnCl₂ II. Cl₂ III. SOCl₂ / Pyridine IV. NaCl V. POCl₃ / Pyridine (A)I, II, IV (B)II, IV, V (C)I, III, V (D)I, III (E)III, V

B 77. Which is the major product from the acid catalyzed hydrolysis of cyclohexene oxide?

D 78. Which is the major product of the following reaction?

(A) (B) CH₃ (C) CH₃CHCHCH₃

$$CH_3 CH_3CHCHCH_3$$
 (C) CH₃CCHCH₃
 $CH_2=CCH_2CH_3$ OH OH OH
(D) CH₃ (E) CH₃CHCCH₃ (E) CH₃
 CH_3CHCCH_3 (E) CH₃
 O CH₂=C-CH=CH₂

A 79. Which is the major product of the following reaction?

E 80.Which is the best method for making the following conversion?

IV. CH₃OH

C 81. Arrange the following in order of increasing rate of reactivity with HBr (least first)

(A)I, II, IV, III
(B)II, I, III, IV
(C)IV, III, I, II
(B)III, II, IV, I
(E)III, IV, I, II
A 82. Which is the best method for making the following conversion ?
CH₃CH₂S-SCH₂CH₃ → 2
CH₃CH₂SH

(A)Zn, HOAc (B)I₂ (C)CrO₃, H_2SO_4 (D) H_2O_2 (E) H_2O , H^+ A 83. Arrange the compounds in order of increasing acidity (least first).

(A) I \square \square \square \square \square (B) \square I \square \square (C) \square \square I \square (D) I \square \square \square (E) \square I \square \square \square C 84. How can phenol be distinguish from cyclohexanol?

(A)HCl(aq) (B)NaHCO₃(aq) (C)NaOH(aq) (D)Na(s) (E)CrO₃, H₂SO₄

B 85.Arrange the compounds in order of increasing reactivity toward electrophilic aromatic substitution (lowest first).

 $(A) \amalg I \amalg V \amalg (B) \amalg I \amalg \Pi (C) I \amalg IV \amalg (D) IV \amalg I (E) \amalg IV I \amalg B 86. Which compound is the strongest base ?$

 $(A)CH_{3}NH_{2}$ $(B)(CH_{3})_{2}NH$ $(C)(CH_{3})_{3}N$ $(D)^{CH_{3}NH_{3}OH^{-}}$ $(E)NH_{2}OH$

B 87. Arrange the following in order of increasing strength of the hydrogen bonds (weakest first)

 $I \cdot C = N \quad \text{II} \cdot C = O \quad \text{III} \cdot C = C \quad \text{IV} \cdot C = S$

(A) II, I, IV, III
 (B) I, II, IV, III
 (C) III, I, II, IV
 (D) IV, III, I, II
 (E) III, IV, I, II
 A 89. Very prominate peaks in the IR spectrum are sufficient to distinguish between which compounds ?
 I. Diethyl ether and diethyl amine

II. Cyclohexanone and cyclopentanone

III. Pentanal and pentanol

IV. 2-hexene and 3-hexene

 $(A) I, \blacksquare (B) \blacksquare, \blacksquare (C) \blacksquare, \mathbb{N} (D) \blacksquare, \mathbb{N} (E) \blacksquare$

C 90. Which is the index of hydrogen deficiency for a compound having molecular formula C₇H₅Cl₂NO ? (A)3 (B)4 (C)5 (D)6 (E)7 B 91. Which compound undergoes the fastest exchange of hydrogen for deuterium when treated with D_2O and a trace of OD^- ?

C 92. Which of the following compounds cannot be used in an aldol self reaction ?

(A)ethanal (B)acetone (C)benzaldehyde (D)acetophenone (E)phenylacetaldehyde C 93.Which phrase correctly completes the statement ?

Except for glycine, which is achiral, all the amino acids present in proteins...

(A)are chiral, but racemic (B)are meso forms (C)have the L configuration at their α carbon (D)have the R configuration at their α carbon (E)have the S configuration at their α carbon

C 94.What are the products obtained following treatment of Ser-Tyr-Val-Ala with chymotrypsin? (A)Serine + Tyr-Val-Ala (B)Ser-Tyr + Valine + Alanine (C)Ser-Tyr + Val-Ala

(D)Ser-Tyr-Val + Alanine (E)Serine + Thyrosine + Val-Ala

A 95.The first cycle of the Edman degradation of the tetrapeptide Gly-Ala-Ile-Leu would give a PTH derivation of

(A)Glysine (B)Isoleucine (C)Alanine (D)Leucine

B 96. What are the products of the following reaction?

C 97. Which compound yields an N-nitrosammine after treatment with nitrous acid?

B 98.All but one of the following compounds react with anline to give acetanilide. Which one does not?

C 99.Choose the best sequence of reactions for the transformation given.

