

《化學》

I. Choose one correct answer for the following questions

【單選題】每題1分,共計60分,答錯一題倒扣0.25分,倒扣至本大題零分為止,未作答,不給 分不扣分。

(D)1.

If the equilibrium constant for $A + B \implies C$ is 0.123, then the equilibrium constant for

 $2C \longrightarrow 2A + 2B \text{ is} ___.$ (A) 1.00-2(0.123) (B) 8.13 (D) 66.1 (E) 16.3

(C) 0.123

(E)2. Consider the following rate law: Rate = $k [A]^{n} [B]^{m}$.

How are the exponents *n* and *m* determined?

- (A) By using the balanced chemical equation
- (B) By using the subscripts for the chemical formulas
- (C) By using the coefficients of the chemical formulas
- (D) By educated guess
- (E) By experiment

(D)3. How many oxygen atoms are there in one formula unit of $Ca_3(PO_4)_2$?

- (A) 2 (B) 4 (C) 6
- (D) 8 (E) none of these

(B)4. An unknown substance dissolves readily in water but not in benzene (a nonpolar solvent).

Molecules of what type are present in the substance?

(A) neither polar nor nonpolar (B) polar(D) nonpolar(E) none of these

(A)5. Which of the species below, when dissolved in H_2O , will not produce a basic solution?

$$(A) SO_2 (B) NH_3 (C) BaO$$

(D) $Ba(OH)_2$ (E) none of these

(B)6. $CaCl_2(s)+2H_2O(g) \Longrightarrow CaCl_2 \cdot 2H_2O(s)$

Consider the reaction: The equilibrium constant (A) $K=[CaCl_2 \cdot 2H_2]/([CaCl_2 \cdot 2H_2])/([CaCl_2 \cdot 2$	for the reaction as written $\frac{1}{2}$ Cl ₂][H ₂ O] ²)	(B) $K=1/[H_2O]^2$ (C) $K=1/2[H_2O]$ (E) $K=[CaCl_2 \cdot 2H_2O]/[H_2O]^2$
(D)7. Which of the followin	g concentration measures v	vill change in value as the temperature of a
solution changes?		
(A) mass percent	(B) mole fraction	(C) molality
(D) molarity	(E) all of these	
(A)8. A solution containing	296.6g of Mg(NO ₃) ₂ per lit	er has a density of 1.114 g/mL. The molarity of
the solution is:		
(Mg(NO ₃) ₂ :148.3 g/mol).		
(A) 2.000 M	(B) 2.446 M	(C) 6.001 M
(D) 1.805 M	(E) none of these	
(D)9. Calculate the molality	of C ₂ H ₅ OH in a water solu	tion that is prepared by mixing 50.0 mL of
C_2H_5OH with 100.0 mL of	of H_2O at 20°C. The density	v of the C ₂ H ₅ OH is 0.789 g/mL at 20°C . (C ₂ H ₅ OH:
46.07 g/mol. Density of H	$I_2O \text{ is } 1 \text{ g/cm}^3$).	
(A) 0.086 m	(B) 0.094 m	(C) 1.24 m
(D) 8.56 m	(E) none of these	
(B)10. Which statement about	N_2 is false?	
(A) It is a gas at room tem		
	+3 on one N and -3 on the	other.
(C) It has one sigma and t	wo pi bonds between the tw	vo atoms.
(D) It can combine with H	I_2 to form NH ₃ .	
(E) It has two pairs of non	bonding electrons.	
(C)11. Which of these stateme	ents about benzene is true?	
(A) All carbon atoms in be	enzene are sp ³ hybridized.	
(B) Benzene contains only	π bonds between C atom	15.
(C) The bond order of eac	h C—C bond in benzene is	. 1.5.
(D) Benzene is an exampl	e of a molecule that display	ys ionic bonding.
(E) All of these statements	s are false.	
		een a pair of atoms but move throughout the
molecule, this is called	·	
(A) ionic bonding		

- (B) covalent bonding
- (C) polar covalent bonding

- (D) delocalization of the electrons
- (E) a dipole moment

(B)13. Which one of the following descriptions for microelectrodes is incorrect?

- (A) The dimensions of such electrodes are usually smaller than about 20 $\,\mu$ m.
- (B) The IR (current \times resistance) drop of microelectrodes is higher than traditional electrodes.
- (C) Such electrodes can be used for the study of chemical processes in single cells.
- (D) They are also called ultramicroelectrodes or microscopic electrodes.
- (E) By using such electrodes, three electrodes system is not necessary.

(A)14. Which one of the following descriptions about GC (gas chromatography) is correct?

- (A) In GC, the stationary phase is liquid or solid, the mobile phase is gas.
- (B) It can only be applied for gaseous samples.

(C) In order to obtain a complete separation, different gaseous mixtures are purged into the column successively.

- (D) GC is not an efficient separation technique.
- (E) All of these are correct.

(D)15. Which one of the following detectors is not used for HPLC (high-performance liquid

chromatography)?

- (A) Absorbance detectors
- (B) Fluorescence detectors
- (C) Electrochemical detectors
- (D) Flame ionization detectors
- (E) Mass spectrometers

(B)16. Which one of the following descriptions about CE (capillary electrophoresis) is incorrect?

- (A) Electrophoresis is a separation technique based on the different migration rates of charged species.
- (B) It cannot be used to separate proteins and nucleic acids.
- (C) Its particular strength is the unique ability to separate charged macromolecules.
- (D) Until the appearance of CE, electrophoretic separations were not carried out in columns.
- (E) Most of the detectors used for HPLC can be employed for CE.
- (B)17. The pH meter is widely used for measuring the H⁺ concentrations in the solutions. Which one of the following descriptions for a pH is incorrect?
 - (A) The sensing material is a special thin glass membrane at the tip of the electrode.
 - (B) No reference electrode is required for a pH meter.
 - (C) The real signal obtained from the pH meter is voltage (or difference of potentials).
 - (D) In basic solutions, the indicator electrode also responds to alkali metal ions.
 - (E) pH meters can be used to determine the equivalence point of the acid-base titration.

- (D)18. Atomic spectrometer is widely applied for the analysis of various elements. Which one of the following is not an atomization method used for most atomic spectrometer?
 - (A) Flame
 - (B) Inductively coupled plasma
 - (C) Electrothermal oven
 - (D) Laser
 - (E) Electric spark

(B)19. A method of separation that employs a system with two phases of matter, a mobile phase and a

(C)21. Which one of the following descriptions for the Beer's law is incorrect?

(A) Beer's law is ordinarily represented as $A = \varepsilon$ bs.

(B) For a mixture, the total absorbance at a λ =the sum of individual absorbance if there is no intermolecular interaction.

- (C) Beer's law is more suitable for concentrated solutions.
- (D) Negative deviations are always observed if polychromic radiations are used.
- (E) The b term in the equation of item (a) means the optical length.

(D)22. Buffer solutions are very important for many analytical applications. Which one of the following descriptions about buffer solutions is incorrect?

(A) Buffer solutions are generally from conjugate acid/base pairs.

(B) Buffer solutions can resist to changes of pH when the solutions are diluted or added with strong acids or bases.

- (C) The buffer capacity is the measurement of ability that resists to pH changes.
- (D) The buffer capacity of a solution is determined by the strength of the conjugate acid/base pair.
- (E) The pH of a buffer solution can be determined by $pH=pK_a + \log ([base]/[acid])$.

(D)23. Which one of the following apparatuses is not used for measurement of volume?

- (A) Volumetric (B) Pipet (C) Buret
- (D) Test tube (E) All of these are used for measurement of volume.

(D)24. What is the major product of the following reaction?

(E)26. A chain reaction is one that :

- (A) involves a series of steps
- (B) involves two steps with similar energies of activation
- (C) is initiated by heat
- (D) requires the addition of an external terminating agent
- (E) involves a reaction in which the propagation steps also produce the product and initiator necessary
- for another propagation cycle

(D)27. Which statement best describes 1,3-butadiene?

- (A) 1,3-butadiene is less stable than 1,4-pentadiene due to steric crowding.
- (B) 1,3-butadiene is more stable than 1,4-pentadiene because of less steric crowding.
- (C) 1,3-butadiene is less stable than two molecules of 1-butene.
- (D) 1,3-butadiene is more stable than 1,4-pentadiene due to resonance energy.
- (E) 1,3-butadiene's carbon atoms are sp³ hybridized.

(C)28. Which is the general formula for cyclic hydrocarbons with one double covalent bond between adjacent atoms?

- $\begin{array}{ll} (A) \ C_n H_{2n+2} & (B) \ C_n H_{2n} & (C) \ C_n H_{2n-2} \\ (D) \ C_n H_{2n-4} & (E) \ C_n H_{2n-6} \end{array}$
- (C)29. What is the major product of the following reaction?

$$H_3C$$
 CH_2CH_3 $H_{3}C$ $NaBH_4$ $MeOH$

(D) All of the above

(E) Pentane

(C)34. What is the stereochemistry of the following compound:

(A) R-form

```
(B) S-form(E) racemic mixture
```

(D) meso compound

3 - 6

(C) not chiral

(A)35. What is the name of the compound whose line drawing is shown below?

HO						
(A) 3-ethyl-4-methyl-2-hexano	1					
(B) 4-ethyl-3-methyl-5-hexano	1					
(C) 3,4-diethyl-2-pentanol						
(D) 2,3-diethyl-4-pentanol						
(E) 3-iso-buty1-2-pentanol						
(B)36. Which of the following state			14X			
(A) Alkenes have only sp ² hybr	(A) Alkenes have only sp ² hybridised carbon atoms.					
(B) Alkenes will react with ozone to give carbonyl compounds.						
(C) Amines can react with carboxylic acids to give esters.						
(D) Tertiary alcohols will oxidise to ketones.						
(E) Bromobenzene will undergo an SN ₂ substitution reaction						
(B)37. Which of the following alkyl bromides will undergo the SN_2 reaction the fastest?						
(A) Bromobenzene		(B) Butyl bromide				
(C) <i>tert</i> -Butyl bromide		(D) iso-butyl bromide	e			
(E) 1-Bromo-4-nitrobenzene						
(C)38. What is the normality of a s	olution containing	$49g$ of of H_3PO_4 in 2	,000 mL, of solution?			
(A) 0.25 N	(B) 0.50 N	(C) 0.75				
(D) 1.00 N	(E) 1.50 N					
(D)39. The K _a values for HSO ₄ ⁻ and H ₂ PO ₄ ⁻ are 1.2 x 10^{-2} and 6.3 x 10^{-8} respectively. Therefore it follows the HSO ₄ ⁻ is a acid than H ₂ PO ₄ ⁻ and SO ₄ ²⁻ is a base than HPO ₄ ²⁻ . (A) weaker, weaker (B) stronger, stronger						
(C) weaker, stronger		(D) stronger, weake	э г			
(E) cannot be predicted						
(E)40. Determine the empirical formula of polystyrene which is 92.3% C and 7.7% H. (Atomic weights:						
C = 12.01, H = 1.008).			-			
(A) CH ₃	(B) CH ₂	(C) C ₂ H				
(D) C_2H_3	(E) CH					
= =						

(C)41. Give the intermediate that is formed in the ozonolysis reaction of (E)-2-butene.

(B)47. Which structure best fits compound Y produced by the following series of reactions starting with p-chlorotoluene?

- (B)48. Choose the statement that is true concerning nitrobenzene and electrophilic aromatic substitution.
 - (A) Activate the benzene ring at meta-position
 - (B) Deactivate the benzene ring at the ortho and para-positions
 - (C) meta-Position of benzene ring most deactivated
 - (D) Activate the ortho-position only
 - (E) Activate the para-position only
- (B)49. Which of the following are antiaromatic?

- (E) None of the above
- (A)50. In the experiment, which of the following would have been removed by washing the solution with sodium carbonate?
 - (A) Phthalic acid (B) Methylbenzoate
 - (C) Aniline (D) Nitrobenzene
 - (E) N-Phenylphthalimide
- (A)51. For Diels-Alder cycloaddition reactions to take place most rapidly and in highest yield the dienophile must:
 - (A) be substituted with electron-withdrawing groups
 - (B) be able to adopt and s-trans conformation
 - (C) be substituted with electron-donating groups

- (D) be able to adopt an s-cis consformation
- (E) none of the above
- (D)52. 2-Chloro-1, 3-butadiene is polymerized to yield an excellent, expensive synthetic rubber with good weather resistance called:
 - (A) Chloroprene (B) Isoprene (C) Polystyrene
 - (D) Neoprene (E) none of the above
- (B)53. Which of the following reagents is best used for conversion show below?

(E)54. The mass spectra of alcohols often fail to exhibit detectable M peaks but instead show relatively

large peaks.		
(A) M+1	(B) M+2	(C) M-15
(D) M-16	(E) M-18	

(D)55. The following compound is used as an additive in gasoline to improve its octane value:

Which of the following is a correct IUPAC name for this compound:

(A) 2,2,4-trimethyl-1-pentene

(B) 2,2,4-trimethyl-2-pentene

(C) 2,2,4-trimethyl-5-pentene

(D) 2,4,4-trimethyl-1-pentene

(E) 2,4,4-trimethyl-2-pentene

(E)56. Which of the following amines will react with cyclopentanone to form an enamine?

(A)
$$CH_3(CH_2)_3NH_2$$
 (B) $(CH_3)_3N$ (C) pyridine
(D) $(CH_3)_3N$ (C) pyridine

(D) $(CH_3)_3CNH_2$ (E) none of the above

(D)57. Which of the following compounds is a hydrazone?

- (A) An alpha hydrogen is abstracted by the base to from an enolate anion.
- (B) A nucleophilic base attacks the carbony1 carbon atom.
- (C) The carbonyl oxygen is protonated by the base ion.
- (D) An alpha hydrogen is abstracted by an acid to the enolate anion.
- (E) none of above.

(B)59. What is the product from the following reaction?

(B)60. Which of the following compounds is hydrolyzed most slowly in aqueous NaOH?

(A)
$$\underset{R-C-O-C-CH_{3}}{\overset{O}{}}$$
 (B) $\underset{R-C-NH_{2}}{\overset{O}{}}$ (C) $\underset{R-C-OCH_{3}}{\overset{O}{}}$ (D) $\underset{R-C-O-CH_{2}Ph}{\overset{O}{}}$
(E) $\underset{R-C-Cl}{\overset{O}{}}$

- II. Choose one correct answer for the following questions
- 【單選題】每題2分,共計40分,答錯一題倒扣0.5分,倒扣至本大題零分為止,未作答,不給 分不扣分。
- (A)61. What is the major product of the following reaction?

(B)62. Which of the following is the best method for preparing N-benzylpyrrolidine from benzoic acid?

```
(A) I). Pyrrolidine; II) SOCl_2; III). 1. LAH; 2. H<sub>2</sub>O
(B) I). SOCl_2; II). Pyrrolidine; III). 1. LAH; 2. H<sub>2</sub>O
(C) I). 1. LAH; 2. H<sub>2</sub>O; II). SOCl_2; III). Pyrrolidine
(D) I). SOCl_2; II). 1. LAH; 2. H<sub>2</sub>O; III). 1. Pyrrolidine
(E) None of the above
```

(C)63. What is the major product of the following conversions?

(A)64. What is the major product of the following reaction?

(E)66. What is the major product from this reaction?

$$\begin{array}{c} CH_{3}C \equiv CCH_{3} \xrightarrow{\text{Li}} ? \\ (A) \\ CH_{2} = C = CHCH_{3} \end{array} \begin{array}{c} (B) \\ CH_{2} = C = CHCH_{3} \end{array} \begin{array}{c} (C) \\ HC \equiv CCH_{2}CH_{3} \end{array} \begin{array}{c} (D) \\ HC \equiv CCH_{2}CH_{3} \end{array} \begin{array}{c} H_{3}C \\ H \end{array} \begin{array}{c} CH_{3}C = C \\ H \end{array} \begin{array}{c} CH_{3}C \\$$

(D)67. Which Fischer projections represent pair of enantiomers?

(A)68. Which constitutional isomer has the lowest heat of hydrogenation?

(D)70. An unknown compound, $C_4H_8Br_2$, gave the following NMR spectrum:

Singlet at 1.97 ppm (6H)

Singlet at 3.89 ppm (2H)

What is the structure of the compound?

(E) none of the above

(C)71. What is the major product of the following conversions?

(E) none of the above

(B)72. What is the major organic product of the following reaction?

(D)74. What carbonyl compound and what phosphonium ylide are required for the synthesis of the following alkene?

$$O_{(1)}_{CH_3CH_3} + \bigcirc = P(C_6H_5)_3 (2)_{CH_3CH_2CHO} + \bigcirc = P(C_6H_5)_3 (3) \bigcirc = O + CH_3CH_2CH = P(C_6H_5)_3$$

(A) only (1)(B) only (2)(C) only (3)(D) (2) and (3)(E) (1),(2),and (3).

(A)75. What is the major organic product of the following reaction?

94 年建國後西醫 ・ 全套

(E) C₂H₅

(D)76. Which of the following is most reactive toward nucleophilic aromatic substitution?

(D)78. An unknown compound has the formula $C_8H_{10}OS$, and is known to contain a thiophene ring. The proton NMR spectrum of this compound is:

0.98, triplet, 3H; 1.74, multiplet, 2H; 2.80, triplet, 2H; 7.40, multiplet, 1H; 7.55, multiplet, 2H. What is the structure of this compound?

(A)
$$CH_3CH_2CH_2 \xrightarrow{S} CHO$$
 (B) $CH_3 \xrightarrow{S} CH_2CH_2CH_2CHO$
(C) O (D) O
 $\xrightarrow{S} CH_2CH_2CCH_3$ $\xrightarrow{S} CCH_2CH_2CH_3$

(E) none of the above.

(A)79. Deduce the identity of the compound from the data provide.

C₅H₈O₄: IR (cm⁻¹): 2800-3300 (broad), 2950, 1740 ¹³C NMR (δ, splitting): 17.3 (quartet), 44.3 (singlet), 210.5 (singlet). (A) HO₂CC(CH₃)₂CO₂H. (B) CH₃O₂CCH₂CO₂CH₃.

- (C) HO₂CCCH₂CH₂CH₂CO₂H.
- (D) CH₃O₂CCH₂CH₂CO₂H.
- (E) CH₃O₂CCO₂CH₂CH₃.

(B)80. What is the major organic product of the following reaction?

