高雄醫學大學九十二學年度學士後醫學系招生考試試題

科目	目:化學	考試時間: 80分鐘	共七頁			
說即	月:一.選擇 液(都	題用 2B 鉛筆在「答案卡」上作答,修正時應以橡皮撥 帶) , 未遵照正確作答方法而致無法判讀者,考生自行	ੋ 察拭,切勿使用修正 〕負責。			
	二.試卷	必須繳回,不得攜出試場。				
I. Choose <u>one</u> correct answer for the following questions, 60%。 每題1分,答錯一題倒扣 0.25分,倒扣至本大題零分為止,未作答,不給分亦不扣分。						
1.	The most wide (A) helium	ly used mobile phase for supercritical-fluid chromatography is (B) nitrogen (C) argon (D) carbon dioxide (E) air				
2.	What is the col (A) colorless to	or change of the end point in the iodometry using starch as an indicator? blue (B) colorless to violet (C) blue to red (D) blue to colorless	(E) brown to blue			
3.	Which one can (A) D ₂ lamp	be used as a spectroscopic source in the UV region ? (B) Tungsten lamp (C) Nernst glower (D) Globar (E) Nichrome w	vire			
4.	Which of the fo (A) flame ioniz	collowing detectors for gas chromatography has the lowest detection limit? Eation (B) thermionic (C) electron capture (D) mass spectrometer	(E) photoionization			
5.	Which of the for (A) absorbance	ollowing detector has the lowest detection limit for liquid chromatography? (B) fluorescence (C) electrochemical (D) refractive index (E) r	nass spectrometry			
6.	The end point i (A) the solution (D) the solution	in the Volhard Method is when n turns red (B) the red precipitate forms (C) the precipitate turns red (E) the white precipitate forms	2d			
7.	Dimethylglyox (A) Ni ²⁺ (B)	ime is a specific precipitating reagent for Pb^{2+} (C) Cu^{2+} (D) Cd^{2+} (E) Mg^{2+}				
8.	Karl Fischer tit (A) neutralizati	ration method is based on a/an () reaction that is relatively specific for wa ion (B) precipitation (C) oxidation-reduction (D) complexation	ter. (E) substitution			
9.	The property of iodobenzene. (A) $A > B > C$	f fluorescence of following compounds: A, fluorobenzene; B, chlorobenzene > D (B) $D > C > B > A$ (C) $B > C > D > A$ (D) $D > B > C > A$ (H	e; C, bromobenzene; and D, E) $A = B = C = D$			
10.	What is the uni parts per millio (A) ppm ⁻¹ L cm	it of absorptivity in Beer's law when the path length is given in cm and the con? m^{-1} (B) ppm ⁻¹ cm ⁻¹ (C) cm ppm ⁻¹ (D) ppm cm ⁻¹ (E) cm ppm	oncentration is expressed in			
11.	The difference (A) source	between spectrophotometer and photometer is in the (B) wavelength selector (C) sample container (D) detector (E) sign	al processor and readout			
12.	How many motion (A) 1 (B) 1	les of Br_2 will be produced when 1 mole of potassium bromate is used as a set. 5 (C) 2 (D) 2.5 (E) 3	ource of bromine?			
13.	Which of the for chromophoric (A) capillary e (D) thin-layer	ollowing methods is applicable to nonvolatile and thermally unstable compo- functional groups? electrophoresis (B) supercritical-fluid chromatography (C) gas chromatography (E) high-performance liquid chromatography	unds that contain no tography			
14. ′	The order of the is (A) $\Gamma > BrO_3^- >$ (E) $BrO_3^- > C\Gamma^-$	e end point sharpness for titration of 50-mL of I ⁻ , BrO_3^- , Br^- and Cl^- with AgN > $Br^- > Cl^-$ (B) $I^- > BrO_3^- > Cl^-$ (C) $I^- > Br^- > Cl^- > BrO_3^-$ (D) $BrO_3^- > I^- > Br^-$	VO_3 in the same concentration $a^2 > I^2 > Br^2 > Cl^2$			
15.	Which one is \underline{n}_{C} (A) E^{0} is a relat (B) The reactan (C) E^{0} is depend (D) A positive e electrode ha (E) E^{0} is temper	ot correct about standard electrode potential, E ⁰ ? ive reduction potential ts and products are at unit activity dent of the number of moles of reactant and product shown in the balanced h electrode potential indicates that the half-reaction is spontaneous with respect ilf-reaction rature dependent	alf-reaction t to the standard hydrogen			

第二頁

26. Choose the structure J produced in the following reaction sequence.

第三頁

(A) $CH_3CH_2CO_2H$	(B) PhCH ₂ CO ₂ H	(C) (CH ₃) ₃ CCO ₂ H	$(D) \longrightarrow CH_2CO_2H$	(E) -CO ₂ H
		第四頁	Ę →	\sim

 44. The conversion of butanoic acid to 2-pentanone is best accomplished with (A) 1. thionyl chloride; 2. methyl magnesium bromide (B) 1. methyllithium; 2. H₃O⁺ (C) 1. CH₃OH, H₂SO₄; 2. methyllithium (D) 1. thionyl chloride; 2. methanol (E) 1. diazomethane; 2. H₃O⁺
 45. The conversion of 2-butanone to propanoic acid is best accomplished with (A) 1. ozone; 2. hydrogen peroxide (B) sodium hydroxide, iodine (C) silver oxide, bromine (E) CO₂, H₃O⁺
46. For the following compounds the correct order for decreasing reactivity toward nucleophilic acyl substitution is
$\begin{array}{cccc} CH_3C(O)N(CH_3)_2 & CH_3C(O)CI & (CH_3C(O))_2O & CH_3CO_2CH_3 \\ I & II & III & IV \end{array}$
$(A) II > III > IV > I \qquad (B) I > IV > II > III \qquad (C) III > II > IV \qquad (D) I > IV > III > II \qquad (E) IV > III > II > I > II > IV > III > II > II$
47. The expected product of the reaction below. $CH_3CH_2C(O)OCHO + CH_3NH_2 \longrightarrow$
(A) CH_3NHCHO (B) CH_3CN (C) $CH_3NHC(O)CH_2CH_3$ (D) $CH_3C(O)NH_2$ (E) $CH_3CH_2C(O)OC(O)NH_2$
 48. The conversion of acetaldehyde to 2-hydoxypropanoic acid is best accomplished with (A) 1. CH₃Li; 2. CrO₃, H₂SO₄ (B) 1. NaCN; 2. H₃O⁺, heat (C) 1. SOCl₂; 2. Mg, ether; 3. CO₂ (E) 1, diazomethane; 2. H₃O⁺
 49. The conversion of benzoic acid to phenylacetic acid is best accomplished with (A) 1. LiAlH₄; 2. TsCl; 3. NaCN; 4. H₃O⁺, heat (B) 1. LiAlH₄; 2. TsCl; 3. Mg, ether; 4. CO₂ (C) 1. SOCl₂; 2. Li(CH₃)₂Cu (D) 1. SOCl₂; 2. NH₃; 3. Br₂, NaOH (E) 1. diazomethane; 2. H₃O⁺
50. The aldehyde which would not undergo a Cannizzaro reaction is (A) PhCHO (B) CH ₃ CH ₂ CHO (C) CH ₂ O (D) (CH ₃) ₃ CCHO (E) none of the above
 51. Addition of alanine to distilled water will produce (A) a slightly basic solution (B) denaturation (E) precipitation (C) a neutral solution
52. Amino acid N-terminal analysis of peptides is often done with (A) carboxypeptidase (D) ethyl chloroformate(B) phenylisothiocyanate (E) none of them(C) dicyclohexylcarbodiimide
 53. Which of the following arrangements is usually not found in the secondary structure of proteins? (A) α-helix (B) double helix (C) random coil (E) all of the above arrangements can be found in the secondary structure of proteins
54. The standard amino acids are stereochemically related to (A) D-glucose (B) L-glyceraldehyde (C) D-glyceraldehyde (D) glycine (E) L-alanine
 55. The best reagent to distinguish between CH₃(CH₂)₁₀CO₂H and CH₃(CH₂)₄CH=CH(CH₂)₄CO₂H is (A) NaOH, H₂O (B) Tollen's reagent (C) H₂Cr₂O₇ (D) Li, NH₃ (E) Br₂/CCl₄
56. Which of the following is piperidine?
$(A) \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
57. Which of the following is indole?
$(A) \bigcup_{N} (B) \bigcup_{N} (C) \bigcup_{N} (D) \bigcup_{N} (D) \bigcup_{N} (E) \bigcup_{N} (H)$
58. Which of the following is oxetane?
$(A) \bigvee (B) \bigvee (C) \bigvee (D) \bigcup (E) \bigvee (C) \bigvee (C) \bigvee (D) \bigcup (E) \bigvee (C) $
59. How many peaks will you expect from ${}^{13}C$ NMR spectrum of CO_2H
(A) 5 (B) 6 (C) 7 (D) 8 (E) 9

第五頁

60. Which of the following molecules will have a net dipole moment?

	$(A)_{CCI_{4}} (B) H_{2}C=CH_{2} (C) CI_{2}C=CCI_{2} (D) \xrightarrow[C]{H} (E) \xrightarrow[H]{H} (E) \xrightarrow[H]{H} (E) \xrightarrow[H]{H} (E)$
II.	. Choose <u>one</u> correct answer for the following questions, 40%。 每題 2 分,答錯一題倒扣 0.5 分,倒扣至本大題零分為止,未作答,不給分亦不扣分。
61	What monomer(s) is (are) needed to make the polymer shown below? $\begin{pmatrix} -0 - H_2 + H_2 & 0 \\ -C - C - C - C - C - C - C - C \\ -C - C - $
	I. HOCH ₂ CH ₂ OH II. HOOCCH ₂ CH ₂ COOH III. HOCH ₂ CH ₂ COOH IV. HOCH=CHOH V. HOOCCH=CHCOOH
62	(A) II (B) III (C) I and II (D) IV and V (E) II and III Baking powder, a mixture of cream of tartar (KHC ₄ H ₄ O ₆ , molar mass 188 g/mol) and baking soda (NaHCO ₃ , molar mass 84.0 g/mol), undergoes the following reaction at baking temperature:
	$KHC_4H_4O_6 + NaHCO_3 \longrightarrow KNaC_4H_4O_6 + H_2O + CO_2$
	(The CO_2 makes the cake rise.) A recipe calls for two level teaspoons (a total of 8.0g) of cream of tartar. How much baking soda must be added for both materials to react completely?
	(A) 0.45 g (B) 1.8g (C) 3.6g (D) 8.0 g (E) none of these
63	 Which of the following <u>is not</u> an oxidation-reduction reaction? (A) A precipitation reaction. (B) A reaction in which a metal reacts with a nonmetal. (C) A combustion reaction. (D) A metal reacting with an acid. (E) All of the above are oxidation-reduction reactions.
64	 Aqueous solution of sodium sulfide and copper(II) chloride are mixed together. Which statement is correct? (A) Both NaCl and CuS precipitate from solution. (B) No precipitate forms. (C) CuS will precipitate from solution (B) No precipitate forms. (D) NaCl will precipitate from solution.
65	. Body temperature is about 308 K. On a cold day, what volume of air at 273 K must a person with a lung capacity of 2.00 L breathe in to fill up the lungs? (A) 1.13 L (B) 1.77 L (C) 2.26 L (D) 3.08 L (E) 3.54 L
66	. Calculate the temperature at which the average kinetic energy of O_2 gas is twice that of He gas at 10 . (A) 2.50 (B) 10.0 (C) 20.0 (D) 160 (E) 293
67.	The sodium salt, NaA, of a weak acid is dissolved in water; no other substance is added. Which of the statements (to a close approximation) is true? (A) $[H^+] = [A^-]$ (B) $[H^+] = [OH^-]$ (C) $[A^-] = [OH^-]$ (D) $[HA] = [OH^-]$ (E) none of these
68	Arrange following 0.10 M solutions from lowest to highest pH: NaF, NaC ₂ H ₃ O ₂ , C ₅ H ₅ NHCl, KOH, HCN. (K_a for HCN is 6.2×10^{-10} ; K_a for HF is 7.2×10^{-4} ; K_a for HC ₂ H ₃ O ₂ is 1.8×10^{-5} ; K_b for C ₅ H ₅ N is 1.7×10^{-9}) (A) HCN, C ₅ H ₅ NHCl, NaF, NaC ₂ H ₃ O ₂ , KOH (B) C ₅ H ₅ NHCl, HCN, NaF, NaC ₂ H ₃ O ₂ , KOH (C) NaF, NaC ₂ H ₃ O ₂ , HCN, C ₅ H ₅ NHCl, KOH (D) KOH, NaC ₂ H ₃ O ₂ , NaF, HCN, C ₅ H ₅ NHCl (E) None of these
69.	In the titration of a weak acid HA with 0.100 M NaOH, the stoichiometric point is known to occur at a pH value of approximately 11. Which of the following indicators would be best to use to mark the endpoint of thus titration? (A) an indicator with $K_a = 10^{-10}$ (B) an indicator with $K_a = 10^{-8}$ (C) an indicator with $K_a = 10^{-14}$ (D) an indicator with $K_a = 10^{-11}$ (E) an indicator with $K_a = 10^{-12}$
70	Silver acetate $(AgC_2H_3O_3)$ is a sparingly soluble salt with $K_{sp} = 1.9 \times 10^{-3}$. Consider a saturated solution in equilibrium with the solid salt. Compare the effects on the solubility of adding to the solution either the acid HNO ₃ or the base NH ₃ . (A) Either substance would decrease the solubility. (B) Either substance would increase the solubility. (C) NH ₃ would increase the solubility, but HNO ₃ would decrease it. (D) NH ₃ would increase the solubility, but HNO ₃ would have virtually no effect.

(E) NH_3 would decrease the solubility, but HNO_3 would have virtually (E) NH_3 would decrease the solubility, but HNO_3 would increase it.

71.	Rank the following solvent in order of decreasing polarity:A. Ethyl acetateB. MethanolC. Methylene ChlorideD. HexaneE. Acetone(A) B>E>A>C>D(B) B>A>E>C>D(C) B>A>C>E>D(D) B>C>E>A>D(E) B>A>C>D>E
72.	The two compounds below can be differentiated with :
	$C = CCH_3$ $CH_2C = CH$ and
	(A) $Ag(NH_3)_2^+OH^-$ (B) Br_2/CCl_4 (C) $H_2 CrO_4$ (D) KMnO ₄ (E) Tollens reagent
73.	Which compound would be expected to show intense IR absorption at 3300 cm ⁻¹ ? (A) butane (B) 1-butene (C) 2-butene (D) 1-butyne (E) 2-butyne
74.	Which compound would be expected to show IR absorption at 2250 cm ⁻¹ ? (A) $CH_3CH_2CH_2CO_2H$ (B) $CH_3CH_2CH_2CH_2OH$ (C) $CH_3C(O)O(O)CCH_3$ (D) $CH_3CH_2CH_2C(O)NH_2$ (E) $CH_3CH_2CH_2CN$
75.	The amine which can be prepared by a Gabriel synthesis is
	(A) $H_3C - $ (B) NH (C) (CH ₃) ₃ CNH ₂ (D) CH ₃ CH ₂ NHCH ₂ CH ₃ (E) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂
76.	Penicillins contain
	(A) a -lactam ring (B) a -lactone ring (C) a thioester group (D) a α -lactam ring (E) a α -lactone ring
77.	Which of the following alcohols would undergo dehydration most rapidly ? (A) CH ₃ CH ₂ CH(OH)CH ₃ (B) (CH ₃) ₂ C(OH)CH ₂ CH ₃ (C) (CH ₃) ₂ CHCH ₂ OH (E) PhCH ₂ CH ₂ OH (C) (CH ₃) ₂ CHCH ₂ OH
78.	The correct order of <u>decreasing</u> acidity of the following compounds.
	$\begin{array}{cccc} O & O \\ H \\$
	$(A) III > I > IV > II \qquad (B) II > III > I > IV \qquad (C) IV > I > III > II \qquad (D) III > II > IV \qquad (E) II > IV > I > III$
79.	The conversion of $CH_3(CH_2)_7CH=CH(CH_2)_7CO_2H$ to $CH_3(CH_2)_{16}CO_2H$ is best accomplished with (A) H ₂ , Ni (B) Li, NH ₃ (C) B ₂ H ₆ (D) LiAlH ₄ (E) NaBH ₄
80.	Which of the structures below would be aromatic?
	(A) I and II (B) I, III and IV (C) III and IV (D) II and II (E) none of them