高雄醫學大學九十三學年度學士後醫學系招生考試試題

科目:化學 考試時間:80分鐘 共9頁 說明:一、選擇題用 2B 鉛筆在「答案卡」上作答,修正時應以橡皮擦拭,切勿使用 修正液(帶),未遵照正確作答方法而致無法判讀者,考生自行負責。 二、試題及答案卡必須繳回,不得攜出試場。

(B) low temperature, high pressure

(D) high pressure, temperature is not a factor

I. Choose one correct answer for the following questions

每題1分,答錯一題倒扣0.25分,倒扣至本大題零分為止,未作答,不給分亦不扣分。

- 1. Coco-Cola® is carbonated by injecting the liquid with carbon dioxide gas. Under what conditions is the solubility of carbon dioxide gas the greatest?
 - (A) low temperature, low pressure
 - (C) low temperature, pressure is not a factor
 - (E) high temperature, high pressure
- 2. Ninhydrin is the hydrate of a triketone and is in equilibrium with it.

In the following statements which one is TRUE?

- (A) Ninhydrin is a good reagent for testing α -amino acids, usually carried out at acidic condition.
- (B) The positive ninhydrin test usually exhibits an intense purple color.
- (C) Ninhydrin is a good reagent for testing nucleosides, usually carried out at basic condition.
- (D) The positive ninhydrin test usually exhibits a red color.
- (E) The positive ninhydrin test usually exhibits a green color.
- 3. Which one is WRONG for gas chromatography?
 - (A) The mobile phase does not interact with molecules of the sample.
 - (B) Capillary columns provide higher resolution than packed columns.
 - (C) Reproducible retention times require control of the column temperature.
 - (D) Immobilized liquid phase should be chemical inert and low volatile.
 - (E) This method is applicable to species that are appreciably non-volatile.

4. Which of the following contains the metal with the lowest oxidation number?

(A) $CaCl_2$	(B) FeSO ₄	(C) MnO ₂	(D) CrO_3	(E) NaBr
5. Which detector is used	in the infrared spectru	ım?		
(A) phototube		(B) photomultiplie	er tube	

- (C) photodiode arrays (D) silicon photodiodes
- (E) thermal detector

6. A fatty acid gives nonanal and 9-oxononanoic acid on ozonolysis followed by zinc treatment. This fatty acid gives stearic acid on hydrogenation by H₂/Pd. What is this fatty acid?
(A) Lauric acid (B) Palmitic acid (C) Arachidic acid (D) Oleic acid (E) Arachidonic acid

7. Cell membranes are composed mostly of ______ organized into a lipid bilayer which serves as an effective barrier to the passage of water, ions, and other components into and out of cells.
(A) glycerophospholipids (B) sphingomyelins (C) prostaglandins (D) lipids (E) fatty acid

8. Wohl degradation: a multi-step reaction sequence for degrading an aldose into the next lower homolog. What is the missing reagent in the following Wohl degradation?

ÇНО э	_		
R	_		
(B) AgO	(C) NH ₃	(D) NH ₂ NH ₂	(E) NH ₂ OH
		rdrolysis. (D) D-ribose	(E) D-deoxyribose
(B) a ketohexose	(C) an anomer of ribo	se (D) an aldohexose	(E) a disaccharide
accharide unit from ch (B) C2	itin has an amino group at (C) C3	what position? (D) C4	(E) C5
Fischer projections of g	glyceraldehydes represent	the same configuration wi	th A?
HOCH ₂ $HOCH_2$ HO	Н СН ₂ ОН — СН ₂ ОН Н — СН — СНО ОН	Ю	
Ū	2 3		
(B) ^① , ^②	(C) ②, ③	(D) ^① , ^② , ^③	(E) none of these
ts which best accompli	shes the desired conversion	on.	
$\xrightarrow{\text{steps}}$ Ethylbenze ide; 2. KOH H, H ₂ O	(B) 1. hydrogen perox		
-			
electrophilic arou (B) reduced in	matic substitution. (C) activating for	(D) para directing for	(E) deactivating for
enes have the molecula (B) 5	r formula C ₅ H ₁₀ , including (C) 6	g <i>E</i> , <i>Z</i> isomers? (D) 8	(E) none of the above
propanoic acid neopentane ethyl chloride		(D) 2, 3, 6	(E) ①, ④, ⑥
$(3)_{3}C^{+}$ $(3)_{3}C^{+}$ $(3)_{3}C^{+}$	(B) ⁽²⁾ , ⁽³⁾ , ⁽¹⁾ , ⁽⁴⁾ (D) ⁽⁴⁾ , ⁽²⁾ , ⁽³⁾ , ⁽³⁾		
	ent D-glucose and 1 eq (B) D-galactose (B) a ketohexose accharide unit from ch (B) C2 Fischer projections of g $HOCH_2 \longrightarrow H$ HO- (D) (B) ①, ② ts which best accompli- steps Ethylbenze ide; 2. KOH H, H ₂ O methyl-2-hexanone sh f the carbonyl group, th (B) 54 electrophilic aro- (B) reduced in enes have the molecula (B) 5 compound with the higher propanoic acid hereopentane ethyl chloride (B) ①, ④, ⑤ 7 (most stable FIRST): a) ₃ C+ (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	(B) AgO (C) NH ₃ ent D-glucose and 1 equivalent on hy (B) D-galactose (C) D-mannose (C) an anomer of ribo accharide unit from chitin has an amino group at (B) C2 (C) C3 Fischer projections of glyceraldehydes represent $40CH_2 \longrightarrow H$ HO $\oplus H$ (CH ₂ OH H $\oplus H$ (D) 2 (3) (B) \oplus , $@$ (C) $@$, $③$ (B) \oplus , $@$ (C) $@$, $③$ ts which best accomplishes the desired conversion steps Ethylbenzene (B) 1. hydrogen perox ide; 2. KOH (D) 1. hydroxylamine H, H ₂ O methyl-2-hexanone shows two typical fragments f the carbonyl group, the other one is m/z = ? duc (B) 54 (C) 56 electrophilic aromatic substitution. (B) reduced in (C) activating for mes have the molecular formula C ₅ H ₁₀ , including (B) 5 (C) 6 compound with the higher boiling point. propanoic acid teopentane ethyl chloride (B) \oplus , \oplus , \oplus (C) $@$, \oplus , \bigoplus (B) $@$, \oplus , \oplus (C) $@$, \oplus , \bigoplus (B) $@$, \oplus , \oplus (C) $@$, \oplus , \bigoplus (B) $@$, \oplus , \oplus (C) $@$, \oplus , \bigoplus (B) $@$, \oplus , \oplus (C) $@$, \oplus , \bigoplus (B) $@$, \oplus , \oplus , (D) \oplus , $@$, (D) ,	(B) AgO (C) NH ₃ (D) NH ₂ NH ₂ ent D-glucose and 1 equivalent on hydrolysis. (B) D-galactose (C) D-mannose (D) D-ribose (B) a ketohexose (C) an anomer of ribose (D) an aldohexose accharide unit from chitin has an amino group at what position? (B) C2 (C) C3 (D) C4 Pischer projections of glyceraldehydes represent the same configuration without the higher boiling point. represented by the total conversion. Steps Ethylbenzene (B) 1. hydrogen peroxide, H ₂ O; 2. KOH ide; 2. KOH (D) 1. hydroxylamine; 2. H ₂ O H, H ₂ O methyl-2-hexanone shows two typical fragments. One is m/z = 43 due to one if the carbonyl group, the other one is m/z = ? due to MeLafferty rearranger (B) 54 (C) 56 (D) 8 electrophilic aromatic substitution. (B) reduced in (C) activating for (D) para directing for ness have the molecular formula C ₃ H ₁₀ , including <i>E</i> , <i>Z</i> isomers? (B) 5 (C) 6 (D) 8 compound with the higher boiling point. ropanoic acid eopentane ethyl chloride (B) 0, 0, 0, (C) (C) 0, 0, (D) (D) 0, 0, 0, 0 (M) 0, 0, 0, 0 (D) 0, 0, 0 (D) 0, 0, 0, 0 (D) 0, 0 (D) 0, 0 (D) 0, 0 (D

第2頁

19. Pentane can be distinguished from ethyl ether by the following test: (A) Only ether liberates hydrogen when sodium is added. (B) Only ether dissolves in concentrated sulfuric acid. (C) Only ether gives a positive iodoform test. (D) Only ether is reduced by sodium borohydride. (E) Only ether is oxidized by aqueous dichromate. 20. If 1-hexyne is added to a solution of sodium amide, a gas is evolved. What is it? $(B) NH_3$ (C) C_6H_{12} (D) C_6H_{10} (E) C_2H_2 (A) C_6H_{14} 21. In the following reaction, choose the MAJOR organic product. piperidine methyl iodide aqueous acid Cyclohexanone . (A) N-methylpiperidine (B) methylcyclohexane (C) 2-methylcyclohexanone (D) 1-methylcyclohexanol (E) 1-methylcyclohexene 22. The pinacol rearrangement proceeds via _____ route. (A) an electrophilic substitution (B) a free radical (C) a cycloaddition (D) a carbocation (E) a carbanion 23. If the nitrogen of pyrrole is protonated, the ring is (B) no longer aromatic (A) cleaved (C) susceptible to electrophilic substitution (D) expanded (E) unaffected 24. The anilinium ion exhibits (A) no characteristic IR bands (B) increased solubility in hexane compared to aniline (C) a purple color due to charge delocalization (D) decreased reactivity for electrophilic substitution compared to aniline (E) a facile decomposition to ammonia 25. How many hydrogen atoms are present in each molecule of 1,3-dimethylbicyclo[1.1.0]butane? (A) 10 (B) 12 (C) 13 (D) 14 (E) 15 26. Consider ① Cl⁻, ② OH⁻, ③ SH⁻, and ④ CH₃⁻. The CORRECT order of nucleophile reactivity is (strongest nucleophile LAST): (A) ④, ③, ②, ① (B) ④, ②, ①, ③ (C) ②, ①, ③, ④ (D) ①, ②, ③, ④ (E) ①, ③, ④, ② 27. How many grams of $Ca(NO_3)_2$ can be produced by reacting excess HNO₃ with 7.40 g of $Ca(OH)_2$? [Ca = 40] (A) 10.2 g (B) 16.4 g (C) 32.8 g (D) 8.22 g (E) 7.40 g 28. For the redox reaction $2 \operatorname{Fe}^{2+} + \operatorname{Cl}_2 \longrightarrow 2 \operatorname{Fe}^{3+} + 6 \operatorname{Cl}^{-}$, which of the following are the correct half-reaction? (1) $Cl_2 + 2e^- \longrightarrow 2 Cl^-$ (2) $Cl \longrightarrow Cl^- + e^-$ (3) $Cl_2 \longrightarrow 2 Cl^- + 2e^ (4) Fe^{2+} \longrightarrow Fe^{3+} + e^{-} \qquad (5) Fe^{2+} + e^{-} \longrightarrow Fe^{3+}$ (C) ② and ④ (D) ^② and ^⑤ (B) ① and ⑤ (E) ③ and ④ (A) 1 and 429. Samples of the gases H₂(g) and SO₂(g) have equal masses and are at the same temperature and pressure. Calculate the ratio of volumes $\frac{V{\rm H}_2}{}$. Vso₂ (A) 1.0 (B) 0.18 (C) 32 (D) 5.6 (E) 180

 $PCl_5(g)$ \longrightarrow $PCl_3(g)$ + $Cl_2(g)$ \triangle H = -89 KJ

How can the equilibrium be shifted to the right?

(A) add more PCl₅

(C) remove Cl₂

(E) all of the above are correct

(B) decrease the pressure by changing the volume(D) remove PCl₃

31. Given the following data

$\Delta \mathrm{H_{f}^{o}}(\mathrm{KJ/mol})$
-286
-242

Calculate \triangle S for the process H₂O(*l*) \longrightarrow H₂O(*g*) at 100°C

(A) 1.18 J / K mole	(B) 11.8 J / K mole	(C) 118 J / K mole	(D) 1180 J / K mole	(E) none of the above				
32. Calculate the pH of 0.10 (A) 9.23) M NH ₄ CN. (K _b for NH ₃ (B) 8.87	= 1.8×10^{-5} ; K _a for HCN (C) 8.21		(E) 5.13				
33. Calculate the work for t	he expansion of CO ₂ from	n 1.0 to 2.5 liters against	a pressure of 1.0 atm at c	onstant temperature.				
(A) 1.5 liter \cdot atm	(B) 2.5 liter \cdot atm	(C) 0	(D) -1.5 liter \cdot atm	(E) -2.5 liter \cdot atm				
34. Green light has a wavel (A) 3.64 x 10 ⁻³⁸ J	ength of 5.50 x 10^2 nm. T (B) 2.17 x 10^5 J	he energy of a photon of (C) 3.61 x 10 ⁻¹⁹ J	green light is: (D) 1.09 x 10 ⁻²⁷ J	(E) 5.45 x 10 ¹² J				
35. According to the Bohr r(A) electrons are locate(C) protons spin count(E) all of the above are	ed in similar orbitals erclockwise	(B) electrons have identical energies(D) electrons can only occupy specific orbitals						
36. The maximum number (A) 4	of electrons that can occur (B) 6	py a 4d sub-shell is: (C) 8	(D) 10	(E) varies				
37. How many electrons are (A) 0	e in a hydride ion if it has (B) 1	a charge of -1? (C) 2	(D) 3	(E) 1.5				
38. A polar covalent bond re(A) unequally sharing(C) one atom giving up(E) hydrogen atom over	a pair of electrons o an electron	(B) equally sharing a pair of electrons(D) two atoms sharing a single electron						
39. Which of the following		1						
(A) CO_2	(B) CH ₄	(C) CH_2Cl_2	$(D) H_2$	(E) F_2				
 40. The entropy of the university (A) 1st law of thermody (C) 3rd law of thermody (E) Gibbs' law 	ynamic	This is a statement of (B) 2 nd law of thermodynamics (D) Hess' law						
41. The reaction of NaOH v (A) esterification	vith a fat is referred to as: (B) dissociation	(C) hydrolysis	(D) saponification	(E) condensation				
42. For a reaction to be spot(A) delta H must be ne(C) delta S must be ne(E) delta G must be ne	gative gative	lowing must be TRUE? (B) delta H must be positive (D) delta S must be positive						

43. How many mL of 15 M (A) 0.015	I HNO ₃ are needed to make (B) 0.03	e 500 mL of a 2 M solutio (C) 33.3	on? (D) 66.7	(E) 15
 44. Which of the following (A) exhibit hydrogen (B) higher solubility if (C) can be oxidized to (D) undergo dehydrati (E) undergo addition to 	bonding n water form aldehydes or ketones ion in acid	-	\$?	
45. Which of the following (A) Fission	process is used by nuclear (B) Fusion	power plant? (C) Gamma emission	(D) Isotope dilution	(E) Radiation
46. What is the complement (A) ATG	tary sequence $(3' \rightarrow 5')$ to (B) TAA	the DNA segment CAT (C) AGG	? (D) CAT	(E) GTA
47. An atom becomes an io(A) gaining or losing p(C) gaining or losing p(E) gaining or losing p	protons	(B) gaining or losing ele(D) gaining or losing m		
48. In order for the electron (A) energy is absorbed	n to return to the ground sta d (B) energy is released	· • •	(D) electron is lost	(E) electron is gained
49. Which bond is the least (A) N-H	polar? (Electronegativities (B) P-H	s: H = 2.2; N = 3.0; O = 3 (C) O-H	3.5; P = 2.1; S = 2.5) (D) S-H	(E) P-S
50. For a double displacem were combined. A prec (A) white	ent reaction demonstration ipitate was formed as a pro (B) green			ution of lead (II) nitrate (E) red
(C) Never work alone(D) Never use your m	on at all times.	ely flood the affected area		of water.
52. Which working electro (A) Ag/AgCl electrod	de is used for pH measurer e (B) Calomel electrode		(D) Glass electrode	(E) Pt electrode
Salt B: initial water Which statement is a C (A) The dissolving of (B) The dissolving of (C) The dissolving of (D) The dissolving of		temp. 30.2°C temp. 20.0°C these data? tic. c. endothermic. the dissolving of salt B v		re measured and
54. How many moles of ox equation? NO (g) - (A) 1 mol	ygen gas, O ₂ , will react wi → O ₂ (g) → NO ₂ (B) 2 mol		$O = 30.01; NO_2 = 46.01]$	
55. Which pair of Lewis el				
$(A) \qquad \bullet \qquad \bullet \qquad \bullet \\ \bullet B \bullet \bullet C \bullet$	(B) B • C :	$(C) \bullet B \bullet \bullet C \bullet$	(D) $\mathbf{B} \cdot \cdot \mathbf{C} \cdot$	(E) B C

(A) (B) (B) (C) (C) (D) (D) (E) (E)

56. Which pair of words correctly completes this statement: Ultraviolet light is more dangerous than infrared light because it

(D) speed – less

has more energy. The	of ultraviolet light is	than infrared light.
(A) wavelength – longer	(B) frequency – higher	

(C) speed – greater

(E) frequency – lower

57. Which orbital diagram violates the rule "no two electrons can have the same set of four identical quantum numbers"?

1s 2s 2p (A) (1)(1)(1)**(B)** (\uparrow) (C) $(\uparrow)(\uparrow)(\uparrow)$ (1)(D) (\uparrow) (E) (\uparrow)

58. Which of the following plots correctly describe ideal gas behavior?

59. These compounds are:

$$\begin{array}{cccc}
Ph & Ph \\
H & Br & H & Br \\
H & Br & Br & H \\
Ph & Ph & Ph \\
\end{array}$$

(A) enantiomers (B) diasteroisomers (C) conformers (D) geometrical isomers (E) identical

60. Rank the following molecules in order of decreasing C-C bond length of their shortest C-C bonds.

II. Choose one correct answer for the following questions

每題2分,答錯一題倒扣0.5分,倒扣至本大題零分為止,未作答,不給分亦不扣分。

- 61. Which one is CORRECT for buffer capacity of a solution?
 - (A) It is defined as the number of moles of a strong acid or a strong base that cause 1 mL of the buffer to undergo a 1.00-unit change in pH.
 - (B) It depends only on the total concentration of buffers, not on their concentration ratio.
 - (C) The pKa of the acid chosen for a given application should lie within ± 1 unit of the desired pH for the buffer.
 - (D) A buffer solution of any desired pH can be prepared by combining calculated quantities of buffer pair, no need any adjustment.
 - (E) Dissociation constants would not interfere with the predicted pH values.

62. There is a titration of 50.00 mL of 0.0500 M Fe^{2+} with 0.1000 M Ce^{4+} in a medium (1.0 M H₂SO₄). Calculate the potential after the addition of 25.00 mL of Ce^{4+} .

$$Ce^{4+} + e_{-} \rightarrow Ce^{3+} E^{0} = 1.44 V (1 M H_{2}SO_{4})$$

$$Fe^{3+} + e_{-} \rightarrow Fe^{2+} E^{0} = 0.68 V (1 M H_{2}SO_{4})$$
(A) 0.64 V (B) 1.06 V (C) 1.56 V (D) 2.01 V (E) 2.21 V

63. What mass of Ba(IO₃)₂ (487 g/mol) (Ksp = 1.57×10^{-9}) can be dissolved in 400.0 mL of water at 25°C? (A) 0.732 mg (B) 5.45 mg (C) 0.142 g (D) 0.178 g (E) 0.280 g

64. The iron in a 0.6656-g ore sample was reduced quantitatively to the +2 state and then titrated with 26.75 mL of the KMnO₄ solution (0.02966 M). Calculate the percentage of Fe₂O₃ (Fe=55.8 g/mol) in the sample. (A) 95.12 % (B) 47.56 % (C) 43.12 % (D) 38.04 % (E) 19.02 %

65. Which of the following compounds does NOT react with acetyl chloride?

(A) C_2H_5OH (B) $C_6H_6 + AlCl_3$ (C) CH_3COONa (D) C_2H_5Cl (E) $C_2H_5NHC_2H_4OH$

66. A compound exhibits an infrared band at 2245 cm⁻¹ and is hydrolysed by mineral acid to give an organic acid. The original compound is:

(A) an ester (B) an amide (C) a nitrile (D) an acid anhydride (E) an alkyne

67. Compound X has an empirical formula CH₂ and a molecular weight of 84. When X is subjected to ozonolysis two organic products are obtained; only one of these reduces Fehling's solution and both give positive iodoform reactions. X is:
(A) hex-1-ene
(B) hex-2-ene

- (C) hexa-1,4-diene (D) 3-methylpent-2-ene
- (E) 2,3-dimethylbut-2-ene

68. Metathesis reactions have been known for many years, and one of examples is given as follow.

What catalyst is commonly used in running the metathesis reactions?

(D) $Pd(OH)_2/C$ (E) None of above (A) Lindlar catalyst (B) Raney nickel (C) Grubbs' catalyst 69. ^{""Et} + CH₃ HO⁻ + + Br (2)3 (1)If the above reaction was strictly S_N1 , the organic product(s) would be: (A) ① only (B) \bigcirc and \oslash (C) \bigcirc , \oslash and \bigcirc (D) ② only (E) ③ only

70. The minimum concentration of oxygen necessary to sustain fish life in an aquarium is 4 mg/L. Assuming the density of the aquarium water solution is 1.00 g/mL, what is the minimum concentration of O₂ expressed in parts per million (ppm).
(A) 2 ppm
(B) 4 ppm
(C) 2000 ppm
(D) 250 ppm
(E) 0.004 ppm

71. For the reaction 2 A + B \rightarrow products, determine the rate law for the reaction given the following data:

A: Initial Concent	tration, M <u>B: Ir</u>	itial Concentration, M	Initial Rate, M·s ⁻¹	
0.1		0.1	2.0×10^{-2}	
0.2		0.1	8.0×10^{-2}	
0.3		0.1	1.8×10^{-1}	
0.2		0.2	8.0×10^{-2}	
0.3		0.3	1.8×10^{-1}	
(A) rate = $k[B]^2$	(B) rate = $k[A]$	(C) rate = $k[A][B]$	(D) rate = $k[A]^2$	(E) rate = $k[A][B]^0$

72. A certain carbohydrate compound (containing only C, H and O) is 53.3 % C, 11.1 % H, and 35.6 % O by mass. The experimentally determined molecular mass is 90 amu. What is the empirical and chemical formula for this carbohydrate?
(A) C₂H₅O
(B) C₃H₅O
(C) CH₃O
(D) C₃H₅O₂
(E) C₄H₁₀O₂

73. Given the standard reaction enthalpies for the following reactions: What is $\triangle H^{\circ}$ for the reaction: $C_{3}H_{8}(g) + 5 O_{2}(g) \rightarrow 3 CO_{2}(g) + 4 H_{2}O(g)$

$3 C(s) + 4 H_2(g)$ $C(s) + O_2(g) \rightarrow$ $2 H_2(g) + O_2(g)$	\cdot CO ₂ (g)	$\triangle H^{o} = -103.8 \text{ kJ}$ $\triangle H^{o} = -393.5 \text{ kJ}$ $\triangle H^{o} = -483.6 \text{ kJ}$		
(A) 773.3 kJ	(B) -773.3 kJ	(C) -2043.9 kJ	(D) -2251.5 kJ	(E) -2527.5 kJ

74. Propose a structure for a compound $C_5H_{10}O$ that fit the following ¹H-NMR data: $\delta 0.92$ (3H, t, J = 7 Hz), 1.20 (6H, s), 1.50 (2H, q, J = 7 Hz), 1.64 (1H, br s).

(A) isopentanol (B) 2-methyl-2-butanol (C) isopropyl methyl ketone

(D) 2-methyl-1-butanol (E) ethyl propyl ether

75. How many signals are expected in the ¹³C NMR spectrum of the following compound?

76. What is the product of the following reaction?

77. Rank the following in order of decreasing acid strength (most acidic FIRST).

78. Which of the following choices correctly describe the solubility of benzoic acid (I) and 2-naphthol (II) in the aqueous solution shown?

A	.q. NaOH	А	.q. NaHCO ₃
(A) I, soluble;	II, insoluble	I, insoluble;	II, soluble
(B) I, insoluble;	II, soluble	I, soluble;	II, insoluble
(C) I, soluble;	II, soluble	I, soluble;	II, insoluble
(D) I, soluble;	II, insoluble	I, soluble;	II, insoluble
(E) I, soluble;	II, soluble	I, soluble;	II, soluble

79. Which of the following compounds will undergo decarboxylation on heating?

80. What is the product from the following esterification?

· •

2004 學士後西醫·建國精采詳解

高雄醫學大學 93 年度學士後西醫招生考試 - 試題詳解

科目:化學

後醫化學試題解答

題號	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
答案	В	В	Е	Ε	Ε	D	Α	Е	В	Е	В	В	Е	D	Е	С	D	В	В	В	С	D	В	D	Α
題號	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
答案	D	В	Α	С	Ε	С	Α	D	С	D	D	С	Α	С	В	D	Е	D	E	A	Е	В	В	В	С
題號	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
答案	E	D	D	Α	С	В	A	В	В	Α	С	В	С	В	D	С	D	С	В	В	D	Е	С	送分	Α
題號	76	77	78	79	80																				
答案	С	D	С	D	B																				

後醫化學試題評析

評析:洪亮老師

- (1)今年後醫化學試題普通化學佔 48%,全是一般觀念問題,不必煩雜演算即可得知正確 答案;分析化學僅佔 2%(第 62 題),此題目出在普化講義第 12 回(第 38 頁);另外 有機化學則佔 50%,包含鹵烷、烯、炔、芳香烴、醇、醛、酮及羧酸皆有命題,今年 有機化學考題甚至還考醣類(第 8、9、10 及 11 題),脂質(第 6、7 題),胺基酸(第 2 題)及核酸(第 46 題)等,是歷屆考試中較爲罕見的,但題目簡單,例如:Ninhydrin 檢驗 α amino acids,臭氧分解測定不飽和脂肪酸雙鍵位置,及 DNA 二級結構雙螺旋鹽 基對互補性: A = T 及 G ≡ C 等課堂上皆有介紹。
- (2)由於化學題目簡單,無法測出考生化學程度,一般考生皆可掌握 80 分以上成績,實力 佳者可拿滿分,預計本班學員在化學科方面應可大獲全勝!
- (3) 此次考試化學一科爭議題有:

 ① 第 67 題: 原公佈解答為(E), 化合物 X 分子式為 C₆H₁₂, 經臭氧分解產生兩個有機 產物,一個產物 Fehling's test 及 Iodoform test 呈陽性,推測此產物為 0 目, 另一 CH₃CH
 個產物僅 Iodoform test 呈陽性,推測此產物為 methylketone,由以上結果推論化合物

X 結構式應為 (D) CH₃ | CH₃CH=CCH₂CH₃

- ② 第 72 題: 原公佈解答為(E), 化學式(Chemical formula)有實驗式(empirical formula)、
 分子式(molecular formula)及結構式(structural formula)三種,此題目問實驗式,
 因此答案應為(A) C₂H₅O
- ③ 考試題目有誤者爲第 74 題:原題目 Propose a structure for a compound C5H10O 應更正
 - 為 Propose a structure for a compound $C_5H_{12}O$

