高雄醫學大學八十九學年度學士後醫學系招生考試試題

科目:普通物理 考試時間:八十分鐘

甲、填充題:(共二十個空格,每個空格3分,計60分)

1.能量為 50KeV 的 X 光波長為 (1) nm, 頻率為 (2) Hz。

- 2.60Co 的放射性同位素常用於治療癌症,它的原子核會因為不穩定而產生衰變,假設衰變過程中減少的質量為 m,並且放出衰變粒子。則所有衰變粒子共獲得多少動能?__(3)__,衰變粒子中的 粒子是什麼物質?__(4)__,衰變粒子中的 粒子是什麼物質?__(5)__。
- 3.發射頻率 f_0 電波的測速雷達面向一輛遠離超速汽車,測得頻率偏移量 f/f_0 是 2 × 10^{-7} , 則車速為 (6) m/s_0
- 4.太空梭距離地面 160km, 若考慮 450nm 波長的可見光, 太空人在太空梭上用眼睛直接觀察(設此時瞳孔直徑 5mm), 可看見地表上的最小物體的大小為 17.6m。現在若使用口徑 1.4 m、放大倍率設置為 200 倍的望遠鏡觀察,可看見地表上的最小物體的大小為 __(7)_cm? 仍然用望遠鏡觀察,但是考慮 300nm 的紫光,則最小物體的大小為 __(8)_cm?
- 5.RL 電路如圖 1 ,電感 L=120mH ,電阻 R=4 ,電源 =24V。在 t=0 時間始導通,當電流 為 2A 時,此時電阻消耗的功率為何__(9)___ ?傳送到電感的功率為何__(10)___ ?電路的最 終穩定電流為何__(11)___ ?

圖 1

6.如圖 2,光纖纖核及纖殼折射率各為 n_1 及 n_2 , $(n_1>n_2)$, 欲使在纖核和纖殼間之界面作全反射,若在空氣界面處之最大入射角為 n_1 ,則 n_2 , n_3 , n_4 , n_5 , n_6 , $n_$

圖 2

- 7.二平行長直導線相距 d , 各載有同方向之電流 I_a 及 I_b , 空氣之導磁係數為 μ_O , 則各導線單位長度所受的磁力為__(13)__。
- 8.2kg 的物體置於一傾角為 30 的 斜 面 上 , $\bf m$ 0.2 , 則物體下滑加速度 $\bf m$ 14) $\bf m$ 18ec² , 沿斜面下滑 0.5m 期間 , 地心引力作功=__(15)__。
- 9.如圖 3, 電池 A 之電動勢 $_{A}$ =6V, 內電阻 $_{R}$ =1 , 電池 B 之電動勢 $_{B}$ =18V, 內電阻 $_{R}$ =2 , 電池 C 之電動勢 $_{C}$, 內電阻 $_{C}$ =0.4 , 則 $_{C}$ =__(16)__V 及電池 A 之端電壓=__(17)__V

圖 3

10.如圖 4,一入射波由晶體的兩個平行晶格平面反射後作建設性干涉之條件為__(18)__ (波長為)

圖 4

11.如圖 5 , 均勻磁場限定在半徑為 R 的圓柱區域內 , 若磁場以 dB/dt 的變化率增加 , 任意點 P 與中心點距離為 r , 則(a)r R 時 , P 點的感應電場為__(19)__ , (b)r>R 時 , P 點的感應電場為__(20)__。

圖 5

- 乙、計算題:(共4題,每題10分,計40分;缺計算過程不予計分)
 - 1. 一大氣壓下,兩莫耳的空氣 $(M=29 \times 10^{-3} \text{ kg/mol})$ 由 0 定壓下加熱到 100 。 (a)吸熱多少?(b)氣體作功多少?(c)內能變化多少?(cp=1kJ/kg) 解:

$$\label{eq:continuous} \begin{array}{lll} \mbox{(a)Q=mc$_p$} &. & T=(2)(2.9 \times 10^{-3})(1000)(100-0)=5800 J \\ & \mbox{alsoQ=n. Cp.} &. & T=(2)Cp(100-0) & Cp=29 J/mol. \\ \mbox{(b)w=Q-} & U=5800-4137.2=1662.8 J \\ \mbox{(c)} & U=(n)(Cv) &. & T=(n)(Cp-R)(& T)=(2)(29-8.314)(100-0) \\ & =4137.2 J & \mbox{(b)to get w} \end{array}$$

2. 一個小木塊放在半徑為 R=40m 的圓柱體內部,圓柱體繞水平軸旋轉,週期 2s。開始圓柱體帶著木塊做等速率圓周運動,到達某一角度 時木塊開始滑落,設摩擦係數為 $\mu=0.75$,木塊速率 v ,證明 g sin $=\mu$ (g cos $+v^2/R$)。

解:

Fx:Nsin -fcos =ma_c=m .
$$\frac{v^2}{r}$$
=mrw²=(m)(Rsin)($\frac{v}{R}$)²

Nsin -fcos =mRv²sin /R (1)

in F:f=Fgsin f= μ N=mgsin (2)

From(2) N= $\frac{mg\sin \mathbf{q}}{\mathbf{m}}$ (1)

 $\frac{mg\sin^2\mathbf{q}}{\mathbf{m}}$ - $\mathbf{n}(\frac{mg\sin \mathbf{q}}{\mathbf{m}})$. cos = $\frac{m \cdot R \cdot V^2 \sin \mathbf{q}}{R}$

divide(msin)both sides $\frac{g\sin \mathbf{q}}{\mathbf{m}}$ =gcos + $\frac{V^2}{R}$

- 3. 如圖 A , 時間 t=0 時 , 電容量帶電量 q=0 , 接上電源 後 , 求充電時電流 i 與時間 t 之關係式。(即將 i 以 R , C , , t 表之) 解:
 - i.e. Rc charging circuit V=0

i.e.
$$=V_C+V_R=\frac{q}{c}+iR=\frac{q}{c}+R\cdot\frac{dq}{dt}$$

solve for the diff.eq. in above, we get

$$q=q(t)=c(1-e^{t/2})$$
 where =RC

$$i = \frac{dq}{dt} = \frac{\mathbf{e}}{R}e^{-\frac{t}{RC}}$$

圖 A

4. 如圖 B,質量為 m,密度為 ,截面積為 A,長度為 ℓ 之均質細棒,求棒對於通過質心的 垂直軸(p 軸)之轉動慣量?

解:

$$\begin{split} \mathbf{I}_{\mathrm{cm}} &= \int \mathbf{r}^2 \mathrm{dm} = \int (\mathbf{r}^2)(\lambda \mathrm{dr}) = \lambda \int_{-\frac{\ell}{2}}^{+\frac{\ell}{2}} \mathbf{r}^2 \mathrm{dr} \quad \text{where} \quad \mathbf{m} = \rho \mathbf{A}\ell = \lambda \ell \quad \therefore \lambda = \rho \mathbf{A} \\ &= \mathbf{r} \mathbf{A} (\frac{1}{12} \ell^3) = \frac{1}{12} m \ell^2 \end{split}$$

圖 B

89 年學士後西醫試題分析暨解答

甲、填充題

(1) 0.0248

(2) 1.21×10^{19} (3) mc^2 (4)電子 (5)氦原子核

(6) 60

(7) 6.27

(8) 4.18

(9) 16w (10) 32w

(11) 6A

 $(12)\sqrt{n_1^2 - n_2^2} \qquad (13)\frac{\mu_0 I_a I_b}{2\pi d} \qquad (14) \ 3.2 \qquad (15) \ 4.9$

(16) 25 (17) 9 (18) 2dsin = m (19) $-\frac{1}{2} \left(\frac{dB}{dt}\right)(r)$ (20) $-\left(\frac{R^2}{2}\right) \left(\frac{dB}{dt}\right) \left(\frac{1}{r}\right)$