高雄醫學大學九十一學年度學士後西醫學系招生考試式題

科目：物理

一，選擇題（單選題，每題答對4分，答錯倒扣1分，未作答者，不給分亦不扣分）

（D）1．A 300 N weight， 5 m long rigid uniform ladder is leaning against a smooth vertical wall．A 750 N weight man stands on a rung 4 m up along the ladder from its base as shown in fig． 1 ．What is the minimum coefficient of the statical friction between the ladder and the floor required to keep the system in equilibrium？The angle is 53.1° on a horizontal beam．$\left(\cos 53.1^{\circ}=0.6, \sin 53.1^{\circ}=0.8\right)$
（A） 0.22
（B） 0.42
（C） 0.46
（D） 0.54
（E） 1.90

Fig 1
（C）2．An imaginary closed surface S of radius R is centered on the origin．A positive charge is originally at the origin，and the flux through hte surface is Φ_{e} ．The positive charge is slowly moved from the origin to a point $\mathrm{R} / 2$ away from the origin．Now the flux is \qquad ＿．
（A） $4 \Phi_{\mathrm{e}}$
（B） $2 \Phi_{\mathrm{e}}$
（C）Φ_{e}
（D）$\Phi_{\mathrm{e}} / 2$
（E）$\Phi_{e} / 4$
（E）3．An incompressible fluid flows through a horizontal pipe．At one point in the pipe the pressure in the fluid is p_{1} and the fluid speed is v_{1} ．Further down the pipe pressure is p_{2} and the flued speed is $2 v_{1}$ ．What can be concluded about p_{1} and p_{2} ？
（A）$p_{1}=p_{2}$
（B）$p_{1}=2 p_{2}$
（C） $\mathrm{p}_{1}=3 \mathrm{p}_{2}$
（D） $\mathrm{p}_{1}=4 \mathrm{p}_{2}$
（E）only that $p_{1}>p_{2}$
（E）4．A diffraction grating just resolves the wavelengths 400.0 nm and 400.1 nm in the first order．The number of slits in the grating is \qquad －
（A） 400
（B） 1000
（C） 2500
（D） 3000
（E） 4000
（E）5．A clear sheet of polaroid is placed on top of a simmilar sheets so that their polarizing axes make an angle of 30° with each other．The ratio of the intensity of emerging light to incident unpolarized light its \qquad ． $\left(\cos 30^{\circ}=\frac{\sqrt{3}}{2}, \sin 30^{\circ}=\frac{1}{2}\right)$
（A） $1 / 4$
（B） $1 / 3$
（C） $1 / 2$
（D） $3 / 4$
（E） $3 / 8$
（B） 6 ．What is the intensity ratio of sound for the heavy truck at $1.5 \mathrm{~m}(90 \mathrm{~dB})$ to normal conversation at $1 \mathrm{~m}(60 \mathrm{~dB})$ ？
（A） 1.5
（B） 10^{3}
（C） 0.67
（D） 10^{30}
（E） 110^{-3}
（D）7．What is the ratio of the shortest wavelength of the Balmer series to the shortest wavelength of the Lyman series in the spectrum of the Hydrogen atom？
（A）2
（B） 5
（C） 3
（D） $4 \quad$（E） 9
（D）8．Some sunglasses are coated on one side with a thin film of MgF_{2} to reduce reflection from the glass surface． The index of refraction of MgF_{2} is 1.38 ；that of the glass is 1.50 ．What is the least coating thickness that eliminates（via interference）the reflections in the range of the visible spectrum（ $\lambda=550 \mathrm{~nm}$ ）？Assume that the light is approximately perpendicular to the glass surface．
（A） 40 nm
（B） 60 nm
（C） 80 nm
（D） 100 nm
（E） 120 nm
（C）9．The two headlights of a car are 1.4 m apart．At what maximum distance will the eyes resolve them？Assume that the pupil diameter is 5.0 mm ，and use a wavelength of 550 nm for the light．（Consider only diffraction effects．）
（A） 3 km
（B） 5 km
（C） 10 km
（D） 15 km
（E） 20 km
（D）10．A flute（which we treat as a pipe open at both ends）is 60 cm long．How far from the mouthpiece should a hole be uncovered for the fundamental frequency to be 330 Hz ？（The speed of sound is $330 \mathrm{~m} / \mathrm{s}$ ）．
（A） 35 cm
（B） 40 cm
（C） 45 cm
（D） 50 cm
（E） 55 cm
（B）11．An ideal monatomic gas undergoes a quasistatic expansion to one－third of its initial pressure．Find the ratio of the final volume to the initial volume if the process is adiabatic．$(\gamma=\mathrm{Cp} / \mathrm{Cv}=5 / 3$ for ideal monatomic gas， $\log 3=0.5$ ）
（A） $10^{-0.1}$
（B） $10^{0.3}$
（C） $10^{0.5}$
（D） $10^{0.6}$
（E） $10^{0.7}$
（C）12．A block with mass $\mathrm{m}=250 \mathrm{~g}$ is fastened to a spring with spring constant $\mathrm{k}=85 \mathrm{~N} / \mathrm{m}$ ．The system is excited to oscillate．Assume that there is a velocity－dependent damping force $F_{d}=-b v$ in the system with $b=70 \mathrm{~g} / \mathrm{s}$ ． How long does \dot{t} take for the amplitude of the damped oscillation to drop to half its initial value？$(\ln 2=$ 0．693）
（A） 3 s
（B） 4 s
（C） 5 s
（D）6s
（E） 7 s
（B）13．A thin rod whose length L is 10 cm and whose mass m is 100 g ，suspended at its midpoint from a long wire． Its period T_{a} of angular SHM（Simple Harmonic Motion）is measured to be 2.50 s ．An irregularly shaped object is then hung from the same wire and its period T_{b} is found to be 5.0 s ．What is the rotational inertia of the irregular object about its suspension axis？（The rotational inertia for a rod is $\frac{1}{12} \mathrm{~mL}^{2}$ ）
（A） $1.73 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$3.30 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
（C） $4.62 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
（D） $6.12 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
（E） $7.64 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
（B）14．In high－speed motion through air，the resisting force is approximately $\mathrm{F}=\mathrm{cv}^{2}$ ．For a human body falling through air in a spread－eagle position，c is about $0.25 \mathrm{~kg} / \mathrm{m}$ ．An 80 kg sky diver jumps out of an airplane and reaches terminal speed before opening the parachute．What is the terminal speed？
（A） $49 \mathrm{~m} / \mathrm{s}$
（B） $56 \mathrm{~m} / \mathrm{s}$
（C） $72 \mathrm{~m} / \mathrm{s}$
（D） $84 \mathrm{~m} / \mathrm{s}$
（E） $98 \mathrm{~m} / \mathrm{s}$
（無解）15．A neutral water molecule $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in its vapor state has an electric dipole moment of magnitude $6.2 \times 10^{-30} \mathrm{Cm}$ ．How far apart are the molecule＇s center of positive and negative charge？
（A） 1.9 pm
（B） 2.9 pm
（C） 3.9 pm
（D） 4.9 pm
（E） 5.9 pm

說明： $\overrightarrow{\mathrm{p}}=2 \mathrm{e} \ell$

$$
\begin{aligned}
\ell & =\frac{\mathrm{p}}{2 \mathrm{e}}=\frac{6.3 \times 10^{-30} \mathrm{c} \cdot \mathrm{~m}}{2 \times 1.6 \times 10^{-19} \mathrm{c}} \\
& =1.97 \times 10^{-11} \mathrm{~m} \\
& =19.7 \mathrm{pm}
\end{aligned}
$$

但第 15 題之五個答案中無此答案故此題應無解答
（B）16．In a mass spectrometer，the initally stationary ion is accelerated by the electric field due to a potential V．The ion enters a separator chamber in which a uniform magnetic field B is perpendicular to the path of the ion． The magnetic field causes the ion to move in a semicircle，striking a photographic plate at distance x from the entry slit．Suppose that $B=80 \mathrm{mT}$ and $\mathrm{V}=1000$ Volts，and ion of charge $\mathrm{q}=+1.60 \times 10^{-19} \mathrm{C}$ strikes the plate at $x=1.63 \mathrm{~m}$ ，what is the mass of the ion？
（A） 185.7 u
（B） 204.9 u
（C） 224.6 u
（D） 241.5 u
（E） 267.8 u
（A）17．Consider a parallel－plate capacitor of plate area A and plate separation．A potential difference Vo is applied between the plates．The battery is then disconnected，and a dielectric slab of thickness b and dielectric constant k is placed between the plates．Assuming $\mathrm{A}=100 \mathrm{~cm}^{2}, \mathrm{~d}=1.00 \mathrm{~cm}, \mathrm{Vo}=90 \mathrm{~V}, \mathrm{~b}=0.8 \mathrm{~cm}, \mathrm{k}=2.00$ ． What is the capacitance with the slab in place？
$\left(\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}\right)$
（A） 14.8 pF
（B） 16.8 pF
（C） 17.9 pF
（D） 20.9 pF
（E） 21.9 pF
(A) 18.A 200 g top spinning at $20 \mathrm{rev} / \mathrm{s}$ makes an angle of 30° to the vertical and precesses at a rate of 1 rev per 10.0 s . If its CM (Center of Mass) is 4.0 cm from its tip along its symmetry axis, what is the moment of inertia of the top?
(A) $1.00 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ (B)
$2.04 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
(C) $3.06 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
(D) $4.08 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
(E) $6.62 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
(D) 19.A phone cord is 4.00 m long. The cord has a mass of 0.200 kg . If a transverse wave pulse travels from the receiver to the phone box in 0.100 s , what is the tension in the cord?
(A) 50.0 N
(B) 60.0 N
(C) 70.0 N
(D) 80.0 N
(E) 90.0 N
(D) 20.A thermodynamic system undergoes a process in which its internal energy decreases by 500 J . If at the same time, 220 J of work is done on the system, what is the thermal energy transferred to or from it?
(A) 280 J
(B) -280 J
(C) 720 J
(D) -720 J
(E) 1220 J
(A) 21.A dipole for which $\mathrm{p}=3.8 \times 10^{-30} \mathrm{C} \cdot \mathrm{m}$ is in a uniform field $\mathrm{E}=7 \times 10^{4} \mathrm{~N} / \mathrm{C}$. What is the external work needed to rotate the dipole from alignment with the field to angle 60° to the field? $\left(\cos 60^{\circ}=0.5 ; \sin 60^{\circ}=0.9\right)$
(A) $1.33 \times 10^{-25} \mathrm{~J}$
(B) $2.39 \times 10^{-25} \mathrm{~J}$
(C) $3.99 \times 10^{-25} \mathrm{~J}$
(D) $5.56 \times 10^{-25} \mathrm{~J}$
(E) $7.12 \times 10^{-26} \mathrm{~J}$
(D) 22.A 5 A current flows in a circular loop of radius 2 cm . The axis of the loop is at 30° to auniform field 0.06 T . What is the magnitude of the torque on the loop?
(A) $1.22 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}$
(B) $1.88 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}$
(C) $1.22 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~m}$
(D) $1.88 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~m}$
(E) $3.76 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~m}$
(C) 23.A 15 pF parallel-plate capacitor is connected to a 50 V battery. The area of each plate is $80 \mathrm{~cm}^{2}$. What is the energy density in the fiele? $\left(\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}\right)$
(A) $2.62 \times 10^{-4} \mathrm{~J} / \mathrm{m}^{3}$
(B) $3.38 \times 10^{-4} \mathrm{~J} / \mathrm{m}^{3}$
(C) $5.00 \times 10^{-4} \mathrm{~J} / \mathrm{m}^{3}$
(D) $6.76 \times 10^{-4} \mathrm{~J} / \mathrm{m}^{3}$
(E) $7.97 \times 10^{-4} \mathrm{~J} / \mathrm{m}^{3}$
(E) 24.What minimum frequency of light is needed to eject electrons from a metal whose work function is $4.3 \times 10^{-19} \mathrm{~J} ?\left(\mathrm{~h}=6.63 \times 10^{-34} \mathrm{JS}\right)$
(A) $1.9 \times 10^{14} \mathrm{~Hz}$
(B) $3.8 \times 10^{14} \mathrm{~Hz}$
(C) $4.6 \times 10^{14} \mathrm{~Hz}$
(D) $5.2 \times 10^{14} \mathrm{~Hz}$
(E) $6.5 \times 10^{14} \mathrm{~Hz}$
(C) 25 .Through how many volts of potential difference must an electron be accelerated to achieve a wavelength of $0.28 \mathrm{~nm} ?\left(\mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js} ; \mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}\right)$
(A) 12 V
(B) 16 V
(C) 19 V
(D) 31 V
(E) 34 V

