Choose one best answer for the following questions

【單選題】	毎題1	分,	共計 30	0分,	答錯 1	題倒扣	0.25 分	,倒扣	至本大題	零分為止	,未
	作答,	不給	分亦不	:扣分。	1~15	題為普	通生物,	16~30	題為生化	心概論。	

	作答,不給分亦不扣分	• 1~	15 題為普通	生物	7,16~30題為	生化概論。	
16. What f	following pairs have the low	est d	issociation co	nsta	nt?		
(A)	Enzyme and substrate		(E	3)	Typical receptor	r and ligand i	nteraction
(C)	Antibody and antigen		(I))	Sequence-speci	fic protein an	d DNA
(E)	Biotin and avidin						
17. What d	lifference(s) is there between	n cell	lulose and ch	itin?			
(A)	N-acetyl moiety		(E	3)	$\alpha 1 \rightarrow 4$ and $\beta 1 \rightarrow$	4 linkages	
(C)	$\alpha 1 \rightarrow 4$ and $\alpha 1 \rightarrow 3$ linkages		(I)	Galactose and g	lucose moiet	y
(E)	$\alpha 1 \rightarrow 4$ and $\alpha 1 \rightarrow 6$ linkages						
18. What is	s the precursor of long-chair	ı fatt	y acids?				
(A)	Linoleate	(B)	α-Linolenat	e	(C)	Oleate	
(D)	Stearate	(E)	Palmitate				
19. Which	amino acid side chain has th	ne hi	ghest pKa?				
(A)	Arginine (B) Cysteir	ne	(C) Histic	dine	(D) Lysin	e (E)	Tyrosine
20. What s	tatement for cell cycle is FA	LSE	E?				
(A)	G0: reentry point						
(B)	G1 phase: RNA and protein	n syr	nthesis. No D	NA	synthesis.		
(C)	S phase: DNA synthesized	doul	bles				
(D)	G2 phase: DNA and protei	n syı	nthesis contin	ue			
(E)	M phase: mitosis						
21. In the p	pairs of precursor/product, w	hich	is FALSE ?				
(A)	acetyl-CoA/fatty acid						
(B)	isopentenyl diphosphate/ch	oles	terol				
(C)	glutamine/purines						
(D)	arginine/pyrimidine						
(E)	dihydroxyacetone phospha	te/tri	iacylglycerol				
22. Which	of the following coenzymes	is re	equired for m	ethic	onine synthase?		
(A)		(B)	pyridoxal pl			tetrahydrofo	lic acid
(D)	S-adenosylmethionine	(E)	NADH	_	. ,	-	

23. Which	of the following is located	l ın mı	tochondria intermembran	e space	??
(A)	complex II	(B)	coenzyme Q	(C)	complex III
(D)	cytochrome C	(E)	complex IV		
24. Which	of the following polysaccl	narides	s contains sulfate groups?	,	
(A)	heparin	(B)	hyaluronic acid	(C)	peptidoglycan
(D)	chitin	(E)	None of the above		
25. In hum	nans, uric acid is an end pro	oduct i	n the metabolism of	<u> </u>	
(A)	Amino acids	(B)	Phospholipids	(C)	Purines
(D)	Pyrimidines	(E)	Cholesterol		
26. Which	of the following statement	ts abou	ut miRNAs and siRNAs i	s FALS	SE?
(A)	miRNAs can block the tr	anslat	ion of mRNA.		
(B)	miRNAs is a non-coding	RNA			
(C)	miRNAs and siRNAs pro	omote	mRNA degradation.		
(D)	RNA polymerase II regul	lates th	ne expression of miRNA	gene.	
(E)	Drosha is involved in the	proce	ssing of miRNAs and siR	RNAs	
27. In aero	obic state, the reaction of gl	ycoly	sis (one molecule of gluce	ose) pro	oduces
(A)	two molecules of pyruva	te, fou	ir molecules of ATP, and	two mo	olecules NADH miRNAs
	can block the translation	of mR	NA		
(B)	two molecules of pyruva	te, two	molecules of ATP, and for	our mol	ecules NADH
(C)	two molecules of pyruva	te, two	molecules of ATP, and the	hree mo	olecules NAD ⁺
(D)	two molecules of pyruvar	te, two	molecules of ATP, and to	wo mol	ecules NADH
(E)	two molecules of pyruva	te, two	molecules of ATP, and to	wo mol	ecules NAD ⁺
-	(S) is a glycoprotein found			-	
in SAF	RS-CoV-2 and has a molec	ular w	eight of 180–200 kDa. H	Based of	n the above information,
we kno	ow that				
(A)	the SARS-CoV-2 has a g	enome	e of 29,881 bp in length		
(B)	the expressed S protein fi	rom E	coli would have a molec	cular we	eight around 140 kDa
(C)	S protein is a dimmer				
(D)	S protein binds to the hos	st cell	by recognizing the recept	or ACE	22
(F)	S protein plays a key role	in co	Il mambrana fusion proce	.00	

29. Which	of the following pairs abo	out the	accumulated molecul	lles and met	tabolic disorder is NOT
correct	• •				
(A)	Homogentisate - Alkapto	nuria			
(B)	Tyrosine - Phenylketouria	a			
(C)	Homocysteine - Homocy	stinuri	a		
(D)	Branched-chain α-keto ac	cids - I	Maple syrup urine dise	ease	
(E)	Uric acid - Gout				
30. The fol	llowing statements about D	NA re	plication is <i>E. coli</i> are	e correct <i>ex</i>	cept:
(A)	Both leading strand and l	agging	strand require prime	r.	
(B)	DNA polymerase adds a	new n	icleotide to the free 3	'OH of the	existing nucleic acid.
(C)	The principal replication	enzyn	e is DNA polymerase	e I.	
(D)	It also has a $3' \rightarrow 5'$ exonu	ıclease	activity.		
(E)	It is a processive enzyme	•			
【單選題	】每題 2 分,共計 120 分	、 , 答	惜1題倒扣0.5分 ,	倒扣至本为	、題零分為止,未
	作答,不給分亦不扣分	• 31	-60 題為普通生物,	61~90 題為	生化概論。
C1 1171	1. 0 1 1	1 .	11 1	. 0	
	mino acid is often phospho	•	•	-	. (7)
(A)	Serine (B) Three	nine	(C) Tyrosine ((D) Histid	ine (E) Arginine
62. What c	compound offers the one-ca	arbon ı	unit to produce N ⁵ , N ¹	0-methylene	e tetrahydrofolate in one
	metabolism?			,	Ž
(A)	Methionine	(B)	Serine	(C)	S-Adenosyl methionine
(D)	Choline	(E)	Glycine		
63. What e	enzyme(s) is required for the	he clea	vage of the unmethyl	lated strand	during the mismatched
repair?					
(A)	MutL		(B) Mutl	Н	
(C)	MutS		(D) DNA	A helicase II	/exonuclease VII
(E)	Exonuclease I/exonucleas	se X			
64. What d	lomain(s) of regulatory pro	teins 1	or gene regulation is i	involved in	dimerization?
(A)	Helix-turn-helix	(B)	Helix-loop-helix	(C)	Zinc finger
(D)	Homeodomain	(E)	All of the above		

111 學年度學士後醫學系招生考試 生化概論 試題

65. Which	statement for hemog	globin (the o	xygen-binding	g protein in	red blood cel	lls) is F	ALSE?			
(A)	Hemoglobin exists in T and R states and R state prefers to bind oxygen.									
(B)	Oxygen binding co	nverts hemo	oglobin from T	to R state.						
(C)	Oxygen binding to	hemoglobin	is both allost	eric and coo	perative.					
(D)	Hemoglobin also b	inds H ⁺ and	CO ₂ to lessen	the affinity	for O_2 .					
(E)	Oxygen binding is	also regulat	ed by 2,3-bisp	hosphoglyc	erate, which	stabiliz	es R state.			
66. For tre	atment of AIDS, whi	ich is NOT	a target for the	approved o	lrugs?					
(A)	CD4	(B)	reverse trans	criptase	(C) neur	aminid	ase			
(D)	protease	(E)	integrase							
67. Which	f the following receptors and their types does NOT match?									
(A)	Insulin receptor is	a G-protein-	coupled recep	tor.						
(B)	Epidermal growth	factor recept	tor is a recepto	r tyrosine k	inase.					
(C)	Acetylcholine rece	Acetylcholine receptor is a gated ion channel.								
(D)	Integrin receptor is	ntegrin receptor is an adhesion receptor.								
(E)	Steroid receptor is	Steroid receptor is a nuclear receptor.								
68. Which	of the following co	mpounds ha	s the highest	the most no	egative) stand	dard fre	ee energy of			
hydrol	_	-		`	- ,					
(A)	ATP (to ADP)		(B) ADP (to	AMP)					
(C)	AMP (to adenosine	e)	(D) Glucose	6-phosphate	(to glu	icose)			
(E)	Acetyl-CoA (to ace	etate)								
69. Which	of the following enz	zymatic cofa	ctors and enzy	mes is NO	Γ matched?					
(A)	Biotin for pyruvate	carboxylas	e							
(B)	NAD ⁺ for glucose	6-phosphate	dehydrogena	se						
(C)	Pyridoxal phosphar	te (PLP) for	aminotransfer	ases						
(D)	Thiamine pyrophos	sphate (TPP)) for pyruvate	decarboxyla	ase					
(E)	Vitamin B12 for m	ethylmalony	/l-CoA mutase	;						
70. How m	nany ATP can be net	produced in	a 14-carbon f	atty acid de	gradation to	CO ₂ an	d H ₂ O?			
(A)	88 (B)	92	(C) 94	(D)	96	(E)	98			
71. Fatty a	cids are carboxylic a	cids with hy	drocarbon ch	ains ranging	g from	car	bons long.			
(A)	12 to 24 (B)	4 to 36	(C) 6 to 24	4 (D)	6 to 36	(E)	12 to 32			

kDa, respectively. All of them are monomer proteins. Which of the following statements RRECT ?								
Protein A elutes out first, when you use gel filtration column to separate the mixture of								
those three proteins.								
Protein C is the one that moves fastest, when you separate the mixture of those three								
proteins by SDS-PAGE.								
As shown in the right figure, you can use this Cathode pH 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 Anode								
isoelectric focusing apparatus to separate								
those three proteins.								
When you use a DEAE ion exchange column and 10 mM Tris-Cl, pH 7.0 buffer to								
separate these three proteins, Protein A will be bound by this column.								
None of the above								
of the following is NOT related to RNA-RNA interaction?								
guide RNA (B) Wobble								
Shine-Dalgarno sequence (D) snRNA								
None of the above								
g; (2) Asp; (3) Gly; (4) Cys; (5) His; (6) Ser; (7) Thr. Which of the followings does NOT								
in the preceding seven amino acid residues?								
The amino acid residue in zinc finger to coordinate zinc atom								
The amino acid residue in O-link glycoprotein to link protein and oligosaccharide								
The amino acid residue in Type I topoisomerase to act as a nucleophile to cut DNA								
The amino acid residue in terminal proteins of adenovirus to link nucleotides and protein								
None of the above								
of the following compounds is the substrate of ribonucleotide reductase?								
AMP (B) TDP (C) GTP (D) CDP (E) dAMP								

(C) 4

thermostable DNA polymerase. How many of the preceding items support the hypothesis that

(D) 5

(E) 6

RNA appears before DNA?

(B) 3

(A) 2

. ,	ease of acetyl-CoA; (2) release to pyruvate into acetyl-CoA		, , ,		-	•	·
steps?	17	,	, -			1	S
(A)	$(1) \rightarrow (2) \rightarrow (3)$	(B)	$(1) \rightarrow (3) \rightarrow (2)$	2)	(C) (2)	\rightarrow (1) $\stackrel{\rightarrow}{\rightarrow}$	→ (3)
(D)	$(2) \rightarrow (3) \rightarrow (1)$	(E)	$(3) \Rightarrow (1) \Rightarrow (2)$	2)			
78. Xerode	erma pigmentosum is cause	ed by a	a defect in which	h DNA rep	air pathwa	ıy.	
(A)	Repair of oxidative dama	ge	(B)	Daughter	r-strand ga	p repair	
(C)	Base excision repair		(D)	Mismatc	h repair		
(E)	Nucleotide excision repai	r					
79. The re	verse transcriptases posses	s the	function of ①	RNA-dire	ected DNA	polyme	rase activity
② Pri	mase ③ DNA-directed D	NA po	olymerase activi	ty ④ RN	lase H acti	vity (5)	Helicase
(A)	123 (B) 12(4	(C) 125	(D)	134	(E)	135
80. Which	of the following statement	s abou	at the catabolism	of free py	rimidines	in the hu	man body is
CORR	RECT? ① Free cytosine	and u	racil are not sa	lvaged ②	Degrada	tion of fi	ree cytosine
produc	es β-alanine, CO ₂ , and NH	[4+ 3]	Degradation of	f free uridi	ne produc	es β-amii	noisobutyric
acid, C	O_2 , and NH_4^+ 4 Free thy	mine	are recycled for	synthesiz	ing nucleo	sides	
(A)	123 (B) 12(<u>4</u>)	(C) 12	(D)	13	(E)	134
81. Which	of the following statement	s abou	ut allosteric regu	ılation is T	RUE?		
(A)	An allosteric inhibitor of	an enz	zyme can be a co	ompetitive	inhibitor.		
(B)	An allosteric activator of	an en	zyme may reduc	e the appa	rent Vmax	ζ.	
(C)	An allosteric activator car	nnot b	e substrate of al	losteric en	zymes.		
(D)	An allosteric activator rec	duces	the apparent Km	n.			
(E)	An allosteric effector is a	transi	ition state analog	gue.			
82. Which	of the following products	are pr	oduced by the β	-oxidation	of fatty a	cid? ①	FADH ₂ ②
NAD^{+}	③ NADH ④ NADPH	(5)Ace	etyl-CoA				
(A)	125 (B) 13(5	(C) 145	(D)	235	(E)	245
83. Lesch-	Nyhan Syndrome is due to	a defi	icient in	activity	<i>7</i> .		
(A)	Adenosine deaminase						
(B)	Adenine phosphoribosylt	ransfe	erase				
(C)	Guanine deaminase						
(D)	Hypoxathine-guanine pho	osphoi	ribosyltransferas	se			
(E)	AMP deaminase						

o4. Luka	Tyouc min	INAS IIIay De I	illouilleu a	iitei Symin	CS12 V	ia tile ioi	IOWII	ng reacti	ons excep	n.	
(A) Remov	e noncoding	regions	(introns)	and	ioining	the	coding	regions	(exon)	by

- (A) Remove noncoding regions (introns) and joining the coding regions (exon) by spliceosome
- (B) Self-splicing of mitochondrial or chloroplast mRNA
- (C) Cleavage at the 3' end of the primary transcript
- (D) Addition of a string A residues at the 3' end
- (E) Addition of a methyl-cytosine residue at the 5' end
- 85. An enzyme is found that catalyzes the reaction S \rightarrow P. Researchers find that the $K_{\rm m}$ for the substrate S is 4 μ M, and the $k_{\rm cat}$ is 20 min⁻¹. In an experiment, [S]=6 mM, and V_o=480 nM min⁻¹. What was the enzyme concentration [E_t] used in the experiment?
 - (A) 24 nM
- (B) $24 \mu M$
- (C) 120 nM
- (D) $120 \, \mu M$
- (E) 80 nM
- 86. Which pair of enzymes is involved in glycolysis but **NOT** in gluconeogenesis?
 - (A) Hexokinase and phosphohexose isomerase
 - (B) Phosphofructokinase and pyruvate kinase
 - (C) Phosphofructokinase and phosphoglycerate kinase
 - (D) Phosphoglycerate kinase and pyruvate kinase
 - (E) Phosphoglycerate mutase and enolase
- 87. Amino acids can be classified into different groups based on the R-group structure. Which class of amino acids contains only nonessential amino acids?
 - (A) Hydrophobic

(B) Aromatic

(C) Polar, uncharged

(D) Positively charged

- (E) Negatively charged
- 88. The functions of cholesterol include all the following *except*:
 - (A) A precursor of bile
 - (B) A precursor of vitamin D
 - (C) As an intracellular energy source
 - (D) Sustain cell membrane structure
 - (E) Essential for producing steroid hormone

- 89. The following statements about lipid transport are all correct *except*:
 - (A) Dietary triacylglycerols and cholesterol from intestine is carried by chylomicrons to muscle and adipose tissues.
 - (B) VLDL carries triacylglycerols and cholesterol from liver to muscle and adipose tissues.
 - (C) LDL carries mainly triacylglycerol from liver to muscle and adipose tissues.
 - (D) HDL synthesized from liver picks up cholesterol in the bloodstream and transported back to liver.
 - (E) The loss of triacylglycerols converts VLDL to LDL.
- 90. Which of the following posttranslational modifications is applied to produce active insulin molecules in pancreatic β cells:
 - 1 Phosphorylation of Ser residues
 - ② Glycosylation of Asn residues
 - ③ Cleavage of a signal sequence
 - 4 Proteolytic cleavage of internal sequences
 - (5) Formation of disulfide bonds
 - (A) 345
- (B) (2)(3)(4)
- (C) (2)(5)
- (D) 1245
- (E) 1235

【版權所有,翻印必究

後醫-普通生物及生化概論

	エバハへ		/ LIMIN																	
題號	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
答案	C	В	A	В	E	C	A	В	D	В	D	C	Е	В	C	E	A	E	Α	D
題號	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
答案	D	A	D	A	C	Е	D	В	В	C	C	В	Е	D	C	A	C	В	D	D
題號	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
答案	E	C	D	A	E	С	C	Е	В	В	В	C	D	E	A	Е	E	C	A	Е
題號	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
答案	C	В	В	В	E	C	Α	В	В	В	В	D	E	С	D	C	C	E	D	C
題號	81	82	83	84	85	86	87	88	89	90										
答案	D	В	D	Е	A	В	E	C	C	A										

高雄醫學大學 111 學年度學士後醫學系招生考試試題參考答案疑義釋疑公告

科目	題號	釋疑答覆	釋疑結果							
	16	考生提出釋疑應該是生物學科,不是第16題的生化,第16題 仍維持原答案無誤。	Е							
	18	只有Palmitate屬於16C,其餘選項為18C。長鏈脂肪酸從16C開始合成。維持原答案無誤。	Е							
	22	Methylcobalamin 和tetrahydrofolic acid 均扮演Methionine synthase的coenzyme,因此選項AC均可。								
	27	維持原答案無誤。								
	28	題意並未提及 S protein 扮演細胞膜融合過程的角色。維持原答案無誤。	В							
	29	因為選項 ACDE 都是正確敘述,選項 B (Tyrosine-Phenylketouria)應該為 Phenylalanine-Phenylketonuria,雖 然少打一個字母,但並不影響判讀。所以仍維持原答案。								
11.	62	Glycine cleavage enzyme亦可將Glycine分解產生 methylene,進行N5,N10-methylene tetrahydrofolate合 成。因此更改選項B,E均可。	BE均可							
生化概論	64	Steroid hormone receptor 利用其結構上的2個Zinc finger domain結合在DNA上,而此蛋白並非Dimer。維持原答案無 誤。	В							
	69	維持原答案無誤。	В							
	71	脂肪酸的碳鏈長度(Ranging from 4C~36C)。維持原答案無誤。	В							
	72	IEF, low pH應該接上"+"極,所以(C)不正確。維持原答案無誤。	D							
	73	選項 ABCD 皆與 RNA-RNA interaction 有關。維持原答案。	Е							
	76	DNA lagging strand 在合成 Okazaki fragment 需要 RNA primer。因此維持原答案。	С							
	80	無正確答案。	送分							
	89	HDL is synthesized mainly by the liver, and also by the intestines. 因此維持原答案。	С							

生化概論

莊老師(施政安)老師提供

精選試題解析

- (E) 16. What following pairs have the lowest dissociation constant?
 - (A) Enzyme and substrate
- (B) Typical receptor and ligand interaction
- (C) Antibody and antigen
- (D) Sequence-specific protein and DNA
- (E) Biotin and avidin

註	ť.	解	

Kd (dissociation constant/ M) Binding

10⁻¹⁵ Biotin-avidin

 $10^{-12} \sim 10^{-8}$ Ab-Ag

 $5 \times 10^{-11} \sim 10^{-7}$ DNA-protein $10^{-11} \sim 10^{-5}$ Receptor-ligand

 $10^{-7} \sim 10^{-3}$ Enzyme-substrate

(Lehninger: principles of biochemistry, 2021 8 edition, p.151, Table 5-1)

- (E) 18. What is the precursor of long-chain fatty acids?
 - (A) Linoleate
- (B) α-Linolenate
- (C) Oleate

- (D) Stearate
- (E) Palmitate

試解:

de novo pathway Enongation

Acetyl-CoA + 7 Malonyl-CoA \rightarrow Palmitate (C16) \rightarrow C18 \rightarrow C20

- (D) 20. What statement for cell cycle is **FALSE**?

 - (A) G0: reentry point
 (B) G1 phase: RNA and protein synthesis. No DNA synthesis.
 - (C) S phase: DNA synthesized doubles
 - (D) G2 phase: DNA and protein synthesis continue
 - (E) M phase: mitosis

G2 phase: cell growth and protein synthesis

=>故選 (D)

- (D) 21. In the pairs of precursor/product, which is **FALSE**?
 - (A) acetyl-CoA/fatty acid
 - (B) isopentenyl diphosphate/cholesterol
 - (C) glutamine/purines
 - (D) arginine/pyrimidine
 - (E) dihydroxyacetone phosphate/triacylglycerol

.....

試解:

(D)arginine/pyrimidine → 應是 glutamine/pyrimidine 才對

=>故撰 (D)

- (D) 23. Which of the following is located in mitochondria intermembrane space?
 - (A) complex II
- (B) coenzyme Q
- (C) complex III

- (D) cytochrome C
- (E) complex IV

cytochrome c 是 peripheral protein 即附著在 inner-membrane 外側, 故等同 位於 intermembrane space

=>故選 (D)

- (A) 24. Which of the following polysaccharides contains sulfate groups?
 - (A) heparin
- (B) hyaluronic acid (C) peptidoglycan

(D) chitin

(E) None of the above

試解:

glycosaminoglycan 有 6 種, 只有 hyaluronic acid 不含 S

=>故選 (A) heparin 有含 S

- (E) 26. Which of the following statements about miRNAs and siRNAs is **FALSE**?
 - (A) miRNAs can block the translation of mRNA.
 - (B) miRNAs is a non-coding RNA.
 - (C) miRNAs and siRNAs promote mRNA degradation.
 - (D) RNA polymerase II regulates the expression of miRNA gene.
 - (E) Drosha is involved in the processing of miRNAs and siRNAs

試解:

Drosha 只作用於 pri-miRNA =>故撰 (E)

- (B) 28. Spike (S) is a glycoprotein found on the surface of coronaviruses. S protein has 1273 residues in SARS-CoV-2 and has a molecular weight of 180-200 kDa. Based on the above information, we know that
 - (A) the SARS-CoV-2 has a genome of 29,881 bp in length
 - (B) the expressed S protein from E. coli would have a molecular weight around 140 kDa
 - (C) S protein is a dimmer
 - (D) S protein binds to the host cell by recognizing the receptor ACE2
 - (E) S protein plays a key role in cell membrane fusion process

試解:

只有描述 S protein 的 amino acid 數目及 Mr, 故只能推斷出沒有 Carbohydrate 的蛋白部份 1273 x 110 Dalton (Da) ≈ 140000 Dalton (140 KDa) =>故撰 (B)

- (C) 30. The following statements about DNA replication is *E. coli* are correct *except*:
 - (A) Both leading strand and lagging strand require primer.

	 (B) DNA polymerase adds a new nucleotide to the free 3'OH of the existing nucleic acid. (C) The principal replication enzyme is DNA polymerase I. (D) It also has a 3'→5' exonuclease activity. (E) It is a processive enzyme. 										
	試解: Replicase is DNA polymerase =>故選 (C)	III									
(C) 61.	What amino acid is often phos (A) Serine (B) Three		lin receptor? (D) Histidine (E) Arginine								
	試解: Insuline receptor is a recepto =>故選 (C)	or tyrosine kinase (RTK)									
(B) 62.	What compound offers the or in one carbon metabolism? (A) Methionine (D) Choline	ne-carbon unit to produce (B) Serine (E) Glycine	e N ⁵ , N ¹⁰ -methylene tetrahydrofolate (C) S-Adenosyl methionine								
	試解: Serine is the major source of =>故選(B)	C1-unit									
(B) 63	. What enzyme(s) is require mismatched repair? (A) MutL (D) DNA helicase II/exonucle	(B) MutH	he unmethylated strand during the (C) MutS e I/exonuclease X								
	<mark>試解:</mark> MutH function: 認識 hemi-n =>故選 (B)	•	邊切下一刀								
(B) 64.	What domain(s) of regulatory (A) Helix-turn-helix	proteins for gene regulation	on is involved in dimerization?								
	試解: a. Dimer forms in DNA -bindi zipper. b. Homeodomain is a form o =>故選 (B)										
(C) 66.	For treatment of AIDS, which (A) CD4 (D) protease	is NOT a target for the ap (B) reverse transcriptase (E) integrase									

試解:

AIDS 是 retrovirus 不是 influenza A virus, 故不能用治療 influenza A virus 的藥物-克流感 (Tamiflu), Tamiflu 是 inhibitor of the neuraminidase =>故撰 (C)

- (A) 67. Which of the following receptors and their types does **NOT** match?
 - (A) Insulin receptor is a G-protein-coupled receptor.
 - (B) Epidermal growth factor receptor is a receptor tyrosine kinase.
 - (C) Acetylcholine receptor is a gated ion channel.
 - (D) Integrin receptor is an adhesion receptor.
 - (E) Steroid receptor is a nuclear receptor.

試解

Insulin receptor is RTK (receptor tyrosine kinase)

=>故選 (A)

- (B) 69. Which of the following enzymatic cofactors and enzymes is **NOT** matched?
 - (A) Biotin for pyruvate carboxylase
 - (B) NAD⁺ for glucose 6-phosphate dehydrogenase
 - (C) Pyridoxal phosphate (PLP) for aminotransferases
 - (D) Thiamine pyrophosphate (TPP) for pyruvate decarboxylase
 - (E) Vitamin B12 for methylmalonyl-CoA mutase

試解:

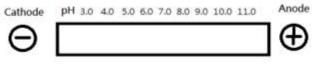
NADP⁺ for glucose-6-phosphate dehydrogenase.

=>故撰 (B)

(B) 70. How many ATP can be net produced in a 14-carbon fatty acid degradation to CO₂ and H₂O?

- (A) 88
- (B) 92
- (C) 94

- (D) 96
- (E) 98


試解

Fatty acid (C2n): ATP 公式為 4 (n-1) + 10 (n) -2

 \Rightarrow : n=7, : .4(7-1) + 10 (7) -2 = 92 ATP

=>故撰 (B)

- (D) 72. The molecular weight of Protein A (pI = 4.0), B (pI = 6.8), and C (pI = 8.5) is 14 kDa, 24 kDa, and 30 kDa, respectively. All of them are monomer proteins. Which of the following statements is **CORRECT**?
 - (A) Protein A elutes out first, when you use gel filtration column to separate the mixture of those three proteins.
 - (B) Protein C is the one that moves fastest, when you separate the mixture of those three proteins by SDS-PAGE.
 - (C) As shown in the right figure, you can use this isoelectric focusing apparatus to separate those three proteins.

- (D) When you use a DEAE ion exchange column and 10 mM Tris-Cl, pH 7.0 buffer to separate these three proteins, Protein A will be bound by this column.
- (E) None of the above

試解:

A. gel filtration: C (first)
B. SDS-PAGE: A (faster)
C. (-)極端必需是高 pH 值

D. DEAD 本身帶正電會吸住負電之 A protein (pl = 4, acidic protein with

a negative charge at pH 7.0)

=>故選 (D)

医位置

【版權所有,翻印必究】