高雄醫學大學 106 學年度學士後醫學系招生考試試題

科目:物理及化學

考試時間: 100 分鐘

科目:物理及化學 考試時間: 100 分鐘 說明:一、選擇題用 2B 鉛筆在「答案卡」上作答,修正時應以橡皮擦擦拭,不得使用修正 液(帶),未遵照正確作答方法而致電腦無法判讀者,考生自行負責。

二、試題及答案卡必須繳回,不得攜出試場。

Choose one best answer for the following questions

【單選題】每題1分,共計30分,答錯1題倒扣0.25分,倒扣至本大題零分為止,未作答,不給分亦不扣分。 1~15 題為物理,16~30 題為化學。

- The capacitance of a cylindrical capacitor can be increased by:
 - (A) decreasing both the radius of the inner cylinder and the length.
 - (B) increasing both the radius inner cylinder and the length.
 - (C) increasing the radius outer cylindrical shell and decreasing the length.
 - (D) decreasing the radius inner cylinder and increasing the radius of the outer cylindrical shell.
 - (E) only by decreasing the length.
- A layer of oil with density 800 kg/m³ floats on top of a volume of water with density 1,000 kg/m³. A block floats at the oil-water interface with 1/4 of its volume in oil and 3/4 of its volume in water, as shown in the figure below. What is the density of the block?

(A) 200 kg/m^3

(B) 850 kg/m^3

(C) 950 kg/m^3

(D) $1,050 \text{ kg/m}^3$

- X rays of wavelength λ = 0.250 nm are incident on the face of a crystal at angle θ , measured from the crystal surface. The smallest angle that yields an intense reflected beam is $\theta = 14.5^{\circ}$. Which of the following gives the value of the interplanar spacing d? ($\sin 14.5^{\circ} \cong 1/4$)
 - (A) 0.125 nm
- (B) 0.250 nm
- (C) 0.500 nm
- (D) 0.625 nm
- (E) 0.750 nm
- A rod of length L and mass M is placed along the x-axis with one end at the origin, as shown in the figure below. The rod has linear mass density $\lambda = \frac{2M}{I^2}x$, where x is the distance from the origin. Which of the following gives the x-coordinate of the rod's center of mass?

- (C) $\frac{1}{3}L$

- A long, straight, hollow cylindrical wire with an inner radius R and an outer radius 2R carries a uniform current density. Which of the following graphs best represents the magnitude of the magnetic field as a function of the distance from the center of the wire?

- The density of ice is 0.920 g/cm³ while that of sea water is 1.025 g/cm³. What fraction of an iceberg is submerged?
 - (A) 0.898
- (B) 0.927
- (C) 0.976
- (D) 1.087
- A series RLC circuit, driven with a sinusoidal external emf with rms voltage 120 V, contains a resistance $R = 200 \Omega$, an inductance $L = 1.0 \, H$, and a capacitance $C = 16 \, \mu F$. What is the resonance frequency of this circuit?
 - (A) 960 Hz
- (B) 1,600 Hz
- (C) 40 Hz
- (D) 6,400 Hz
- (E) 250 Hz

8.	is 15 W/m^2 . What is the total power output of the stars		-	
	(A) $3.2 \times 10^{38} W$ (B) $4.7 \times 10^{27} W$ (C)	$3.8 \times 10^{26} W$ (D)	$7.5 \times 10^{13} W$ (Fig. 1)	E) $1.1 \times 10^{15} W$
9.	9. The focal length of a camera lens is 20.0 <i>cm</i> . How far from the film?	om the lens should the subj	ject for the photo be if the	ne lens is 20.5 cm
		2.10 m (D	(E_1) 6.30 m) 10.0 m
10.	10. Two different samples have the same mass and temperate final temperatures may be different because the samples		ergy are absorbed as he	at by each. Their
	(A) thermal conductivities (B) coefficients of exp		(D) volumes (E)	heat capacities
11.	11. A block whose mass m is 650 g is fastened to a spring w $x = 11$ cm from its equilibrium position at $x = 0$ on a fric frequency of the resulting oscillation motion?			
		10 rad/s (D) 11 rad/s (E	12 rad/s
12.	12. The angular velocity vector of a spinning body points ou	t of the page. If the angula	ar acceleration vector po	ints into the page
	then: (A) the body is slowing down (C) the body is starting to turn in the opposite direction (E) none of the above 	` '	y is speeding up of rotation is changing	orientation
13.	13. A boy pulls a wooden box along a rough horizontal floo <i>f</i> is the magnitude of the force of friction, <i>N</i> is the magnitude. Which of the following must be true?			
	$\bigwedge N$			
	$f \longleftrightarrow P \qquad \overrightarrow{F_g} : \text{ force of } g$ $\overrightarrow{f} : \text{ frictional } g$ $\overrightarrow{N} : \text{ normal } f$	gravity		
	$f \longleftrightarrow P$ $f : frictional$ $N : normal for$	orce		
	(A) $P = f$ and $N = F_g$ (B) $P = f$ a	and $N > F_g$ f the above.	(C) $P > f$ and N	$< F_g$
14.	14. The inertia of a body tends to cause the body to: (A) speed up (B) slow d (D) fall toward the Earth (E) decele	own ate due to friction	(C) resist any c	hange in its motion
15.	15. A thin-walled hollow tube rolls without sliding along the kinetic energy (about an axis through its center of mass)		aslational kinetic energy	to its rotational
	(A) 1 (B) $\frac{2}{3}$		D) 1/2 (E) 1/3
16.	16. Select the answer with the correct number of decimal plate 13.914 cm + 243.1 cm + 12.00460 cm =	_		0.00
1.7		,	D) 269.02 cm (E	,
17.	17. The difference between a student's experimental measur compound reflects the of the student's rest	•	lium chloride and the kr	lown density of this
	(A) accuracy(B) precisi(D) systematic error(E) indeterminant	on minate error	(C) random err	or
18.	18. The average mass of a carbon atom is 12.011. Assuming		only one carbon unit, the	e chances that you
	would randomly get one with a mass of 12.011 is(A) 0% (B) 0.0119)	(C) about 12%	
10		than 50%		
19.	 19. A catalyst (A) changes the enthalpy of the reaction (C) provides an alternate pathway to the reaction (E) is consumed when more reacting molecules are ac 	(D) does not	t change the activation e t change the effective co	
20.	(D) $low P$, $high T$, $high n$ (E) $low P$,	mperature), and n (molar r low T , low n high T , low n	number), respectively, a (C) high <i>P</i> , low	

21.	One mole of an ideal (A) $\Delta S_{\text{gas}} = 0$	gas at 20 °C is expar (B) $\Delta S_{\text{surr}} =$	~	and reversibly $\Delta S_{\text{univ}} = 0$		to 200 L. Whi $\Delta S_{\rm gas} = R \ln 2$		ment is correct? $\Delta S_{\text{gas}} = \Delta S_{\text{surr}}$
22.	Which of the followi (A) LiF	ng ionic compounds l (B) NaCl	_	tice energy? MgO	(D)	KBr	(E)	BaCl ₂
23.	Which of the following (A) IF ₅	ng species has a trigo (B) I_3^-		ructure? NH ₃	(D)	PCl ₅	(E)	All of the above
24.	Naturally occurring of approximate natural a		sotopic forms: ⁶³ (Cu and ⁶⁵ Cu. T	he atomic m	ass of copper is	s 63.55 a	mu. What is the
	(A) 70%	(B) 63%	(C)	90%	(D)	50%	(E)	30%
25.	Mixing 20 mL of a 44 chloride ion concentr	ration of M.						
	(A) 2.67	(B) 3.33	` /	4.00	, ,	4.33	(E)	5.00
26.	How many electrons (A) 2	in an atom can have (B) 6	the quantum num (C)		1? (D)	18	(E)	32
27.	The following reaction		$^{\circ}$ C: $H_2O_{(l)} \rightarrow H_2O_{(l)}$	$O_{(g)}, \Delta H = 44.0$	kJ/mol, ΔS	= 0.119 kJ/mol	ŀK. Whi	ch of the
	following must be tru (A) The reaction is (D) Two of these.		(B) The react (E) None of t	ion is spontane he above.	eous.	(C) $\Delta G <$	< 0	
28.	How many σ bonds a (A) 16, 3	and π bonds are there (B) 13, 2		I=CH-CH ₂ -C≡ 10, 2		10, 3	(E)	14, 3
29.	is a method	of separation that em	nploys a system w	vith two phases	s of matter, i	ncluding a mol	oile phas	e and a stationary
	phase.	-		-	,		-	·
	(A) Chromatograp(D) Vaporization	пу	(B) Distillation(E) Filtration			(C) Hom	ogenizat	.1011
30.	(B) Absorption of(C) Absorption of(D) Absorption of	ng is an example of n NH ₃ and its transform NH ₃ and its transform N ₂ and its transformanitric acid acid acid acid acid acid acid ac	mation into to N_2 . mation into to NC ation into elementation into NH ₃ .	O_2 . tal nitrogen.				
【單	選題】每題 2 分, 31~60 題為\$	共計 120 分,答錯 1 b理,61~90 題為化		倒扣至本大題	[零分為止	,未作答,不怠	合分亦不	扣分。
31.	Two stationary tuning (A) beat with a fre (C) be loud but no (E) have a frequent	quency of 2 beats/s t beat	Hz) are struck sin	multaneously. (B) (D)	beat with a	g sound is obse frequency of 3 shifted by 2 H	351 beats	s/s
32.	Which of the followi solid charged conduc		_	the electric fie	eld as a func	tion of the dista	ance fron	n the center of a
	(A) E	(B) E	(C)	E	(D)	E	(F	

33. A resistor in a circuit dissipates energy at a rate of 1 W. If the voltage across the resistor is doubled, what will be the new rate of energy dissipation?

(A) 0.25 W

(B) 0.5 W

(C) 1 W

(D) 2 W

(E) 4 W

34. Unpolarized light is incident on a pair of ideal linear polarizers whose transmission axes make an angle of 45° with each other. The transmitted light intensity through both polarizers is what percentage of the incident intensity?

(A) 100%

(B) 75%

(C) 50%

(D) 25%

(E) 0%

35. The mass of α particle is 6.601×10^{-27} kg. If the α particle falls through the 100 kV potential difference, then the velocity of the α particle is: (e =1.602×10⁻¹⁹ C)

(A) 3.1×10^6 m/s

(B) 3.1×10^5 m/s

(C) 3.1×10^4 m/s

(D) $3.1 \times 10^3 \text{ m/s}$

(E) $3.1 \times 10^2 \text{ m/s}$

36.		s the pressure on a sv $1.313 \times 10^5 \text{ Pa}$		or 2 m below the surface 1.278×10^5 Pa		swimming pool? (n 1.234×10^5 Pa		mospheric pressure 1.209×10 ⁵ Pa	******	
37.	point a		period	nd rotates at an angulof the motion of the 1.57 s	e shad	•		the edge of the when $2.36 s$		the heighted 3.14 <i>s</i>
38.	A sole	noid has an inducta	ince 75	mH and a winding pullibrium value? (1	resistaı	nce 0.50Ω . If a bat	ttery is c		` ′	
		0.10 s		45 ms	_	4.6 s	(D)	2.0 s	(E)	26 ms
39.		ectric potential in a point (3.0 m, 2.0 m)		lane is given by $V =$	(1.0V)	$(m^2)x^2 - (2.0V/m^2)$	n^2) y^2 . ∇	What is the magnit	ude of	the electric field
		5.0 N/C		6.0N/C	(C)	8.0 N/C	(D)	10 N/C	(E)	14 <i>N/C</i>
40.	needed		e accel	nd is operated at an erated in the cyclot $2\pi mf/(Rq)$	ron? Tl		teron is <i>i</i>		s in Hz	
41.				n x axis, being push					osition	is given by
		$0 m - 3.0 (m/s)t + 4.0 N \hat{i}$		$(s^2)t^2 - 1.0 (m/s^3)t^2 - 4.0 N \hat{i}$				_	(E)	$2.0N\hat{i}$
42.		ith the horizontal. V	Vhat is	own a ramp with acc the coefficient of k 0.70				-	amp m (E)	_
43.	A part		` ′	$\vec{r} = (4.0m)\hat{i} + (3.0m)$, ,		, ,		` '	
		$7.0(N \cdot m)\hat{k}$				(B) –	`	,		
		$7.0(N \cdot m)\hat{i} + 7.0(N \cdot m)\hat{i} + 12(N \cdot m)\hat$, v			(D) –	$7.0(N \cdot i$	$m)\hat{i} - 7.0(N \cdot m)\hat{j}$		
44.	The di	sk's angular mome	ntum is	$5.0 kg \cdot m^2$ rotates as $2.5 kg \cdot m^2 / s$ at time $12 kg \cdot m^2 / s$	e t = 1.0	0s. What is the dis	sk's angu		t=2.	0 s ?
45.	A tank	containing water t	o a hei	ght of 16.0 m also c	ontains	s air above the water	er at a ga	auge pressure of 1	.00 atn	n. Water flows ou
		he bottom through $13 \ m/s$		hole. What is the value m/s		_	(D)	23 m/s	(E)	6.5 m/s
46.	a dista		the so	erator radiates unifound generator. The level 30 dB?	•				-	
	_	12.6 m	•	40.0 m	(C)	80.0 m	(D)	6.67 m	(E)	16.0 m
47.	The in	_	s show	0.40 μm passes thrown on a screen 5.0 m 5.0 mm	_	he slits. What is the			ferenc	
48.	A cup	of tea is made with	0.250	kg of 85.0 °C was	ter. The	en, the cup of tea co	ools dow	n to room temper	ature 2	$0.0 ^{\circ}C$. What is
	the en	tropy change of the	water	while it cools? (For	water,	$c = 4200 \frac{J}{k \sigma \cdot K}$				
	(A)	200 J/K				(B) 230 .				
	(C) (E)	1050ln(1.22) J/K 190 J/K				(D) 1050	ln(0.818	8) J / K		
49.		^{0}C in each cy		en two temperatures I gives up $200 J$ to t						
	(A)	67%	(B)	33%	(C)	75%	(D)	50%	(E)	25%
50.	work o		nis rub	tretched a distance x ber band from $x = 0$	to $x =$		ee F = ax (D)			e constants. The $aL^2/2 + bL^3/3$
	(Λ)	ul I ULA	(\mathbf{D})	uL 20L	(\mathbf{C})	u 20L	(D)	UL		$uL/2 \pm UL/3$

51. The diagram shows a U-tube having cross-sectional area A and partially filled with oil of density ρ . A solid cylinder, which fits the tube tightly but can slide without friction, is placed in the right arm. The system reaches equilibrium. The weight of the cylinder is:

- (A) $AL\rho g$
- (B) $L^3 \rho g$
- (C) $A\rho(L+h)g$
- (D) $A\rho(L-h)g$
- (E) None of the above.
- 52. A solid brass ball of mass 0.280 g will roll smoothly along a loop-the-loop track when released from rest along the straight section. The circular loop has radius R = 14.0 cm, and the ball has radius $r \ll R$. What is h if the ball is on the verge of leaving the track when it reaches the top of the loop?

- 47.8 cm (A)
- (B) 27.8 cm
- (C) 57.8 cm
- (D) 37.8 cm
- (E) 78.3 cm
- 53. The emf E = 1.2 kV, C = 6.5 μ F, R₁ = R₂ = R₃ = 0.73 M Ω . With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what is current i_1 in resistor R_1 ?

- (B) $3.3 \times 10^{-4} \text{ A}$
- (C) 1.1×10^{-4} A
- $2.2 \times 10^{-3} \text{ A}$
- 54. The following shows a rod of length L = 10.0 cm that is forced to move at constant speed v = 5.00 m/s along horizontal rails. The rod, rails, and connecting strip at the right form a conducting loop. The rod has resistance 0.400Ω ; the rest of the loop has negligible resistance. A current i = 100 A through the long straight wire at distance a = 10.0 mm from the loop sets up a (nonuniform) magnetic field through the loop. Find the emf. ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$, $\ln 2 = 0.693$, $\ln 10 = 2.303$, $\ln 11 = 2.398$)

- $2.4 \times 10^{-4} \text{ V}$
- (B) $5.8 \times 10^{-3} \text{ V}$
- (C) $4.8 \times 10^{-5} \text{ V}$
- $8.8 \times 10^{-4} \text{ V}$
- 55. If the five lenses shown below are made of the same material, which lens has the shortest positive focal length?

- 56. For quantum model, $E = hv = hc / \lambda$, where E is photon energy in unit of eV, h is the Planck's constant ($6.626 \times 10^{-34} \, \mathrm{J s}$), v is the frequency (s⁻¹), λ is the wavelength in meters (m), then E× λ (eV m) is:
- (B) 1.24×10^{-4}
- (C) 1.24×10^{-5}
- (D) 1.24×10^{-6}
- (E) 1.24×10^{-7}

57.	A particle with mass m and charge q, moving with a velocity v, enters a region of uniform magnetic field B, as shown in the figure below. The particle strikes the wall at a distance d from the entrance slit. If the particle's velocity stays the same but its charge-to-mass ratio is doubled, at what distance from the entrance slit will the particle strike the wall?
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- 58. The position of a particle moving on x-axis is given by $x = 3.0 + 2.5t 1.0t^3$, with x in meters and t in seconds. Which statement in the following is correct?
 - (A) The particle is moving in the positive direction of x with a speed of $1.5 \, m/s$ at $t = 1.0 \, s$.
 - (B) The acceleration of the particle at t = 1.0 s is $-0.50 m/s^2$.
 - (C) The acceleration of the particle is constant.
 - (D) The particle is moving in the negative direction of x with a speed of 0.50 m/s at t = 1.0 s.
 - (E) The velocity of the particle is constant.
- 59. A wire loop of area 1000 cm² has a resistance of 10 ohms. A magnetic field B normal to the loop initially has a magnitude of 0.1 T and is reduce to zero at a uniform rate in 10^{-4} s . Thus, the resulting current is: (A) 10000 A (D) 10 A 1 A (B) 1000 A (C) 100 A (E)
- 60. A rod of semiconducting material with length L and cross-sectional area A lies along the x-axis between x = 0 and x = L. Its resistivity varies with x according to $\rho(x) = \rho_0 \exp(-x/L)$. The material obeys Ohm's Law. What is the total resistance of the rod?
 - (A)

- $\rho_0(1-e^{-L})$ (B) $\rho_0(1-e^{-L})/A$ (C) $\rho_0(1-e^{-1})/A$ (D) $\rho_0L(1-e^{-1})/A$ (E) $\rho_0L(1-e^{-L})/A$
- 61. A solution contains the ions Ag⁺, Ba²⁺, and Ni²⁺. Dilute solutions of NaCl, Na₂SO₄, and Na₂S are available to separate the positive ions from each other. In order to effect separation, the solutions should be added in which order?
 - (A) Na₂S, NaCl, Na₂SO₄
- (B) Na₂SO₄, NaCl, Na₂S
- (C) Na₂SO₄, Na₂S, NaCl

- (D) NaCl, Na₂S, Na₂SO₄
- (E) NaCl, Na₂SO₄, Na₂S
- 62. Which of the statements below correctly describes the combustion of glucose, shown below?

 $C_6H_{12}O_6 + 6O_2 \implies 6CO_2 + 6H_2O$ (A) Hydrogen in $C_6H_{12}O_6$ is being reduced.

- Oxygen in O₂ is being oxidized.
- (C) Hydrogen in $C_6H_{12}O_6$ is the reducing agent.
- (D) Oxygen in $C_6H_{12}O_6$ is the oxidizing agent.

- (E) Carbon in $C_6H_{12}O_6$ is being oxidized.
- 63. Reaction intermediates differ from activated complexes in that __
 - (A) they are stable molecules with normal bonds and are frequently isolated
 - they are molecules with normal bonds rather than partial bonds and can occasionally be isolated (B)
 - they are intermediate structures which have characteristics of both reactants and products (C)
 - they are unstable and can never be isolated
 - all reactions involve reaction intermediates, but not all have activated complexes
- 64. Select the Lewis structure for XeO₂F₂ which correctly minimizes formal charges.

- 65. Which species has the **highest** bond order?
- (C) O_2^-

- 66. What hybridization is present in the phosphorus atom in PCl₃ and PCl₅, respectively?

 - (A) sp^2, d^2sp^3 (B) sp^2, dsp^3
- (C) dsp, dsp^3
- (D) sp^3 , d^2sp^3
- 67. The spectrochemical series is $\Gamma < Br^- < Cl^- < F^- < OH^- < H_2O < NH_3 < en < NO_2^- < CN^-$. Which of the following complexes will absorb visible radiation of the **highest** energy?
 - (A) $[Co(H_2O)_6]^{3+}$
- (B) $[CoI_6]^{3-}$
- (C) $[Co(OH)_6]^{3-}$ (D) $[Co(en)_3]^{3+}$
- (E) $[CoCl_6]^{3-}$

- (A) $[Cr(NH_3)_3Cl_3]$
- (B) [Cr(NH₃)Cl]SO₄
- (C) $Na_3[Cr(CN)_6]$
- $[Cr(NH_3)_6]Cl_3$
- (E) None of the above.

- 70. If a complex ion is square planar, which d-orbital is **highest** in energy?
 - (A) $d_{x^2-y^2}$
- (B) d_{x^2}
- (D)
- (E) d_{xz}

71. Which of the following statement is incorrect about hydrocarbons?

- (A) Breaking the C—H bonds separately of CH₄ requires different energies.
- The average C-H bond energy of CH₄ is higher than that of H-H.
- Hydrocarbons are hydrophobic.
- Longer alkanes are with higher viscosities than shorter ones.
- Branched alkanes are with lower boiling points than their corresponding straight isomers.

Which of the following molecules is an optically active molecule?

(E) None of the above.

73. The structure below is the repeating unit of a

- (A) homopolymer formed by an addition reaction.
- copolymer formed by an addition reaction.
- homopolymer formed by a condensation reaction.
- copolymer formed by a condensation reaction.
- polyester formed by an addition reaction.

74. Identify the products of the reaction of 3-octene with chlorine.

 $CH_3CH_2CH_2CH = CHCH_2CH_2 + Cl_2 \longrightarrow$

$$\begin{array}{ccc} & & \text{CI} & \text{CI} \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH} - \text{CHCH}_2\text{CH} \end{array}$$

$$\begin{array}{c} \text{CI CI} \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH} - \text{CHCH}_2\text{CH}_3 \\ \text{CI CI} \\ \text{CI CI} \\ \text{CH}_3\text{CH}_2\text{CH}$$

(C)
$$H_3$$
CH $_2$ CH $_2$ CH $_2$ CH $_2$ CH $_3$ CH

$$\begin{array}{ccc} & \text{CI} & \text{CI} \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2^-\text{CH}^-\text{CHCH}_2\text{CH}_3 \end{array}$$

$$(E) \quad \mathsf{CH_3CH_2CH_2CH_2CH} + \quad \mathsf{CH_3CH_2CH_2CH}$$

75. Which of the following statements about molecular spectroscopies is **incorrect**?

- (A) Ultraviolet-visible (UV-vis) spectra provides information about HOMO-LUMO gap.
- Infrared (IR) spectra gives information on bond vibrational transitions.
- (C) Rotation transitions occur in the microwave region.
- Nuclear magnetic resonance (NMR) spectra provides information about the electronic transitions.
- UV-vis spectra involves both the molecular ground state and the excited state.

76. Consider the following reaction: $2NOCl_{2(g)} \implies 2NO_{(g)} + Cl_{2(g)}$. The equilibrium constant *K* is about 0.0196 at 115 °C. Calculate K_p at this temperature?

- (A) 0.196
- (B) 0.624
- (C) 0.285
- (D) 22.9

77. The equilibrium constant for reaction (1) is K. The equilibrium constant for reaction (2) is _

- (1) $SO_{2(g)} + 1/2O_{2(g)} \longrightarrow SO_{3(g)}$
- (2) $4SO_{3(g)} = 4SO_{2(g)} + 2O_{2(g)}$

- (C) 1/4 K
- (D) $1/K^4$

78.	The pH of a $0.005 \text{ M K}_2\text{O}$ (A) 11.7	aqueous solution shou (B) 7.0	ld be(C) 2.3	_•	(D)	12.0	(E)	5.0
79.	How long will it take to pramp? $(F = 96500 \text{ C/mol})$					_		
	(A) 3.26×10^3 s	(B) $8.14 \times 10^2 \text{ s}$	(C) 4.8	8×10^3 s	(D)	$1.63 \times 10^3 \text{ s}$	(E)	$5.43 \times 10^3 \text{ s}$
80.	Given $Cu_2O_{(s)} + 1/2O_{2(g)} -$			$O_{(s)} \rightarrow Cu_{(s)} +$	$CuO_{(s)}$,	$\Delta H^{\circ} = +11 \text{ kJ}$		
	Calculate the standard ent (A) -155 kJ	(B) +299 kJ	(-)	55 kJ	(D)	−299 kJ	(E)	-166 kJ
81.	Calculate E°_{cell} and indicate $Co^{3+}_{(aq)} + e^{-}$ $Co^{3+}_{(aq)} + 2H_2O_{(l)} + 2H_2$	$Co^{2+}_{(aq)}$ $3e^{-}$ MnO_{2l} $q_{l} + 2H_{2}O_{(l)} + 3Co^{2+}_{(aq)}$ ontaneous (B)	$ \begin{array}{c} (s) + 4OH \\ \hline & MnO_2 \\ E^{\circ}_{cell} = -1.23 \end{array} $	$E^{\circ} = 1$ $E^{\circ} = 0$ $E^{\circ} = 0$	1.82 V 0.59 V + 4OH ⁻ (ad neous		23 V	, spontaneous
82.	The successive packing pa (A) ABCABC	attern for a hexagonal c (B) ABCCBA	losest packed s (C) AB			ne following? ABAABA	(E)	AABBAA
83.	Identify the missing partic	ele in the following equ	ation: $_{92}^{238}$ U \rightarrow	$_{2}^{4}$ He + ?				
	(A) $^{242}_{94}$ Pu	(B) $_{90}^{234}$ Th	(C) $\frac{242}{90}$	Γh	(D)	$_{92}^{234}$ U	(E)	None of the above.
84.	How many valence electron (A) 2	ons are there in an atom (B) 3	with the elect (C) 5	ron configurat	tion [nob] (D)	_	¹⁰ np ³ ? (E)	
85.	For the process CHCl _{3(s)} (A) 43.9 J/mol/K	$\rightarrow \text{CHCl}_{3(l)}, \Delta H^{\circ} = 9$ (B) 53.9 J/mol/K		l the melting p 3 J/mol/K		hloroform is –64 75.2 J/mol/K		alculate ΔS° ? None of the above.
86.	(B) describe exact path(C) give a description of(D) allow scientists to of	space in which one is a s for electron motion of the atomic structure v	most likely to f which is essent ne for the hydr	ind an electronially the same ogen atom		ohr model		
87.	Which of the following sp (A) Na ⁺	pecies requires the high (B) F	est energy to re(C) K	emove an elec		n its valence shell Cl ⁻		Mg^{2+}
88.	A reaction was found to be	e zero order in X. Incre	easing the conc	entration of X	by a fact	or of 5 will cause	the re	eaction rate to
	(A) remain constant (D) increase by a factor	* *	increase by a fadecrease by a f		ibe root o	` '	e by a	factor of 5
89.	Which of the following is(A) temperature(C) fraction of collision(E) None of the above.	not a factor determining swith effective orientates		(B) fre	_	f collision of reac	-	
90.	A student needs a solution and their salts to prepare to the solution (A) Benzoic acid ($K_a = (C)$) Propanoic acid ($K_a = (E)$) All of the above.	he buffer. Which system 6.4×10^{-5})		best buffering (B) Ch	g capacity Iloroaceti		× 10 ⁻³	3)

後醫-英文

<u> </u>																				
題號	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
答案	D	A	В	A	D	В	D	В	В	E	A	Е	E	A	A	C	A	В	A	D
題號	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
答案	C	D	A	C	В	В	Е	Е	В	В	Е	В	D	C	A	Е	C	A	D	Е
題號	41	42	43	44	45	46	47	48	49	50										
答案	E	D	В	E	C	A	A	D	A	E										

後醫-物理及化學

	· · · - ·																			
題號	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
答案	В	C	C	E	D	A	C	В	A	E	В	A	A	C	A	E	A	A	C	E
題號	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
答案	C	C	D	A	C	В	D	A	A	D	A	E	Е	D	A	D	В	A	D	C
題號	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
答案	D	В	A	В	D	В	D	D	A	E	A	D	D	A	E	D	Е	D	D	D
題號	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
答案	В	E	В	В	A	E	D	В	D	A	В	C	D	A	D	В	D	D	D	A
題號	81	82	83	84	85	86	87	88	89	90	·		·							
答案	В	C	В	C	A	A	E	A	E	A										

後醫-普通生物及生化概論

題號	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
答案	C	C	В	C	D	В	D	В	C	E	В	В	C	E	C	D	D	C	В	В
題號	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
答案	В	D	E	В	C	В	C	C	A	В	C	В	C	В	В	A	В	C	E	В
題號	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
答案	В	A	D	A	E	В	C	A	A	D	C	A	E	D	D	В	A	C	В	E
題號	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
答案	C	C	Е	В	C	A	В	C	В	C	D	E	A	D	A	В	C	В	C	Е
題號	81	82	83	84	85	86	87	88	89	90							·		·	
答案	Е	В	D	Е	В	Е	В	C	В	C										