高雄醫學大學 106 學年度學士後醫學系招生考試試題

科目:普通生物學及生化概論 考試時間:100分鐘 說明:一、選擇題用 2B 鉛筆在「答案卡」上作答,修正時應以橡皮擦擦拭,不得使用 修正液(帶),未遵照正確作答方法而致電腦無法判讀者,考生自行負責。 二、試題及答案卡必須繳回,不得攜出試場。 I.【單選題】每題1分,共計30分。答錯1題倒扣0.25分,倒扣至本大題零分為止,未作答,不給分亦不扣分。 1~15 題為普通生物學,16~30 題為生化概論。 1 is to xylem as is to phloem. (A) Sclerenchyma cell; parenchyma cell (B) Apical meristem; vascular cambium (C) Vessel element; sieve-tube member (D) Cortex; pith (E) Vascular cambium; cork cambium What type of microscopy is used to take the following image? (A) Confocal microscopy (B) Transmission electron microscopy (C) Scanning electron microscopy (D) Epifluorescence microscopy (E) Light sheet microscopy What do hagfishes and lampreys have in common with the extinct conodonts? (B) the jawless condition (C) bony vertebrae (D) their mode of feeding (E) swim bladders The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas system in many organisms is transforming biology. Which one is NOT part of the class 2 CRISPR gene editing tool? (B) Cas9 endonuclease (C) miRNA (A) crRNA (D) tracrRNA (E) sgRNA The growth model of a logistic population, dN/dt=rN[(K-N)/K], describes a population's growth when an upper limit to growth is assumed. While N numerically approaches the value of K, (B) dN/dt decreases rapidly (A) dN/dt increases rapidly (C) dN/dt increases slowly (D) dN/dt approaches 0 (E) the population is extincted How many of the following is/are **NOT** found in extracellular matrix (ECM) of animal? I. Fibronectins II. Collagens III. Laminins IV. Proteoglycans V. Pectin (A) 0(B) 1 (C) 2(D)3(E)47. How many of the following is/are antagonistic function? I. sympathetic and parasympathetic nerves II. biceps and triceps muscles III. insulin and glucagon IV. thyroid and parathyroid (A) 0(B) 1 (C) 2(E)4(D)3In an electrocardiogram (ECG), there are three major signals. The first one is called P wave, the second one is QRS complex, and the third one is T wave. Which part of the ECG represents the delay of the activation of the atrioventricular node? (A) P wave (B) Interval between P wave and QRS complex (C) QRS complex (D) Interval between QRS complex to T wave (E) T wave What is **NOT** a criterion for evolution to happen in a natural population? (A) Natural selection occurs (B) Traits are inheritable

(E) Organisms produce more offspring than the environment can support

(C) Random mating happens(D) Phenotypic difference exists

10.		en species would decr (B) Mutualism	rease the fitness of both sp (C) Herbivory	ecies? (D) Altruism	(E	E) Competition
11.	Protists are(A) larger prokaryotes (B) the organisms first f (C) multicellular groups (D) the groups of organi (E) the groups of organi	s of eukaryotes isms do not have Golg	i apparatus but have mitoc	chondria in cell		
12.	What are the levels of bi (A) Phenotypic diversity (B) Genetic diversity, sp (C) Genetic diversity, ha (D) Phenotypic diversity (E) Genetic diversity, sp	y, species diversity, ecoecies diversity, ecosyabitat diversity, ecosysy, species diversity, tro	stems diversity stems diversity ophic-level diversity			
13.	Mutations in which of th (A) segmentation genes (D) egg-polarity genes	ne following genes lea	d to transformations in the (B) inducers (E) none of the above	identity of entire (C) homeotic go		?
14.	Which organelle contain (A) ribosome	s single membrane? (B) chloroplast	(C) mitochondrion	(D) nucleus	(E	E) peroxisome
15.	The uptake of low-density (A) pinocytosis (D) simple diffusion ((B) facilitated transpo	rt	(C) receptor-me	ediated end	ocytosis
16.	What complex can be in (A) Complex I	hibited by hydrogen c (B) Complex II	yanide (HCN)? (C) Complex III	(D) Complex V	I (E	E) Complex V
17.	The linking number of states (A) DNA polymerase (-	<u> </u>	. (D) Topoisomer	rase (H	(i) Ribozyme
18.	What is the main place for (A) Mitochondria (D) Endoplasmic reticul	(B) Peroxisome	esis in cells? (C) Cytosol (E) Golgi			
19.	What following compour (A) CO ₂ (C) N ⁵ , N ¹⁰ -Methenyl te	(B) Glutamate	for purine biosynthesis? (C) Aspartate (E) N ¹⁰ -Formyl tetrahyo	drofolate		
20.	Binding of insulin to its (A) occurs on the β-subu (B) induces autophospho (C) reduces binding of (D) leads to the formatio (E) produces DAG and	unit orylation cytosolic substrate pro on of cGMP	f the following statements teins	is correct?		
21.	A lipid derived from isop (A) palmitate	prenoid precursors is _(B) cholesterol	(C) arachidonate	(D) prostagland	in E (E	sphingosine
22.	The biological function of (A) act as a source of AI (D) supply ribose and N	DP biosynthesis	ate pathway is to (B) supply energy (E) supply NAD	(C) supply NAI	ΟΗ	
23.	What is the direct product (A) Acetyl-CoA	ct of pyruvate carboxy (B) Citrate	/lase? (C) Lactate	(D) Phosphoeno	olpyruvate	(E) Oxaloacetate
24.	Which of the following of compound?	enzymes of the citric a	acid cycle listed below resu	ults in the formati	on of a hig	h energy phosphate
	(A) Succinate dehydrogo(D) Citrate synthase		(B) Succinyl-CoA syntheta (E) α-Ketoglutarate dehyd		(C) Isocitra	ate dehydrogenase
25.	glucose-derived pyruvate		luconeogenic amino acid to bodstream, and taken up by (C) Ala	-		by transamination of (2) Pro
26.	Fatty acid synthesis uses (A) Acetyl-CoA (D) Methylmalonyl-CoA	(B) Malon	•	(C) Methylgluta	aryl-CoA	

27.	Which compound represent (A) Protein	esents the most highly co (B) Carbohydrate	oncentrated form of (C) Fatty acid	f stored biological energy? (D) Nucleic Acid	(E) Collagen
28.	What following amino (A) Serine	acid residues in some processing (B) Tyrosine	roteins can be hydro (C) Proline	oxylated? (D) Methionine	(E) Glutamine
29.	What following compo	ounds can enhance inorg (B) Vitamin A	anic iron absorption (C) Thiamine	n from our meal? (D) Vitamin B ₁₂	(E) Vitamin B ₆
30.	(A) positively-charged(C) electrically neutral		(B) negatively-cl (D) Not sure, dep	w is the protein electrically changed pending on the size of the protein	
п. [共計 120 分。答錯 1 題 普通生物學,61~90 題		·至本大題零分為止,未作答	,不給分亦不扣分。
31.	Which structure is com (A) stigma	nmon to both gymnosper (B) carpel	rms and angiosperm (C) ovule	ns? (D) ovary	(E) anthers
32.	(A) auxin - promote(B) cytokinins - init(C) gibberellins - st	is NOT correctly paired es stem growth through of the programmed cell desimulate seed germination promotes seed dormancy of the cell elongation	cell elongation eath on		
33.	Tidal volume in respira (A) cardiac output	ation is analogous to what (B) heart rate	at measurement in (C) stroke volum		(E) diastolic pressure
34.	(A) prolactin and calci(B) oxytocin and prola(C) follicle-stimulating(D) luteinizing hormon	actin g hormone and luteinizin	ng hormone	and nurse her baby?	
35.	different causes. Which (A) Type 1 diabetes als (B) Type 2 diabetes is (C) Insulin injections of (D) Excess body weight	n of the following staten so called insulin-depend an autoimmune disorder can control type 1 diabet	nent is NOT correct lent diabetes. r in which immune tes. ignificantly increas	Each is marked by high blood at? system destroys the beta cells the risk of developing type 2	of pancreas.
36.	•	· · · · · · · · · · · · · · · · · · ·	•	se when $C < Br$, where C is the effit gained by the recipient of	*
			actor	(B) frequency of the a(D) rate of recombinat	
37.	of a sponge possesses a		s, the activities of w (C) Epithelial	which are coordinated. Which o	f the following cell types (E) Nematocyte
38.	population is in Hardy-		which of the follow	aused by a completely recessiving is the predictable percentage (D) 676/900	
39.			nbiosis. What kind(s) of organisms is/are involved (C) Basidiomycete yeast	
40.	How many of the follo I. Acetylcholine IV. Dopamine (A) 0	wing neurotransmitters in II. Gamma-aminobutyn V. Serotonin (B) 1		(s)? III. Norepinephrine VI. Endorphin (D) 3	(E) 4

41.	(A) Endosperm is pro(B) In angiosperms, a(C) The endosperm p(D) The endosperm is	m, which statement is NO oduced by the union of a can endosperm formed by the rovides nourishment to the anutrient source for the nois ground into flour for the statement of the statement is ground into flour for the statement is not statement in the statement is not statement in the statement in the statement is not statement in the statement in the statement is not statement in the statement in the statement is not statement in the statement is not statement in the statement in the statement is not statement in the statement in the statement is not statement in the statement in the statement is not statement in the statement in the statement is not statement in the statement in the statement is not statement in the statement in the statement in the statement is not statement in the statement in the statement is not statement in the statement in the statement in the statement is not statement in the statement in the statement is not statement in the statement in the statement is not statement in the stateme	entral cell with a sperm he union of a sperm with the developing embryo in embryo.	n three polar nuclei during	g double fertilization.
42.	I. Tryptophan acts as a II. Allolactose acts as III. Catabolite activate	owing about bacterial gen a repressor in <i>trp</i> operon. an activator in <i>lac</i> operon or protein (CAP) is activa turned on by an increase i (B) 1	ı. ted by allolactose.		(E) 4
43.	winner(s)? I. Rosalind Franklin II. Shinya Yamanaka III. Brenner, Horvitz a IV. Barbara McClinto	ers provide great contribution— provided X-ray photo— established induced pand Sulston— used <i>Cae</i> ck— found transposon.— discovered signal tra(B) 2	of DNA for Watson and luripotent stem cells. norhabditis elegans to st	Crick.	le is/are Nobel Prize (E) 5
44.		end-joining mediated end joining		repair mechanism is erro	r-free system to repair
45.	I. Papillomavirus — II. Poxvirus — cause III. Picornavirus — c IV. Coronavirus — c	cause warts and cervical e cowpox; belong to dsDN cause hepatitis A; belong cause SARA; belong to ss cause measles and mum (B) 2	cancer; belong to dsDNA NA virus. to ssRNA virus serves as RNA virus serves as mR	s mRNA. NA.	mRNA synthesis. (E) 5
46.	What is the most approximate genomic (A) Ultra-conserved (B) Single nucleotide (C) Targeted enriched (D) Protein-coding genomic (E) Transcriptomes	elements polymorphisms I DNA fragments	measure the genetic varia	ation within human popul	lations using the
47.	(B) Genetic drift caus(C) Genetic drift pref(D) Genetic drift coul	et of genetic drift? Tore significant in small poses allele frequency to chargers advantageous alleles the cause the loss of genetic be one of the reasons that	ange and to fix in a popute of fix in a population. c variation in a population	on.	
48.	and diversity, which of (A) All animals have (B) Most of the diversity (C) In Bilateria, inversity	one below is NOT true? true tissues. sity in animals occurs in latebrates do not share a coeprates share a common an	Bilateria clade. ommon ancestor.	and 770 million years ago	. In terms of their biology
49.	and a female was gene	ground beetles are polyge otyped as AaBbCc. The u he light-color alleles. Wh (B) 15/64	ppercase letters in the ge	enotype are the dark-color	alleles, and the

50.	Why do some social by offspring? Which one (A) It is best explaine (B) The operating the (C) The accounting of (D) When the benefit fitness of altruist, (E) The coefficient of	below is NOT trued by kin selection. Fory is called Hamilton the fitness is called to the recipient of altruism in the systems.	e about to alton's ruled inclustaltruismestem wou	he evolution of thing le. ive fitness. weighted by the ruld evolve.	is altru relatedr	istic behavior?	viduals is		: of
51.	What listed below can (A) Allopatric distribution (C) Panmictic popula (E) Hybridization of	ution of two popul tion		(B) Sexual sele (D) Polyploidy		U 1	pes		
52.	During the history of (A) trilobites, dragont (B) trilobites, reptiles (C) trilobites, dragont (D) dragonflies, trilob (E) dragonflies, trilob	flies, reptiles, dino , dragonflies, dino flies, dinosaurs, rep pites, reptiles, dino	saurs, pri saurs, pri ptiles, pri saurs, pri	imates imates imates imates	ations	(from old to yo	oung) of t	he animals below?	
53.	What is correct about (A) Spermatogonium (D) Primary oocyte is	is haploid.	(B) Prin	e cells during hum mary spermatocyte mary oocyte is dip	e is hap		(C) Oog	gonium is haploid.	
54.	Which one could be the (A) Bats	ne pollinator of the (B) Flies		hat has long floral (C) Bees	l tube?	(D) Hawk mor	ths	(E) Ants	
55.	Choose the correct material (A) Oligodendrocytes (B) Schwann cells produce (C) Radial glia is the (D) Astrocytes metab (E) None of the above	s produce the myel ovide nutritional su source of immuno olize neurotransm	in sheath apport to protectio	s of myelinated non-myelinated non-m	eurons ns.	s	al nervou	s system.	
56.	Which plant group is 2 (A) Ginkgo	NOT vascular plan (B) Mosses		(C) Conifers		(D) Angiosper	rms	(E) Ferns	
57.	Which protein is NO 7 (A) COX	Γ involved in the fi (B) Drp1		l fission process o (C) Opa1	f mitoc	chondria? (D) Mfn1		(E) Fis1	
58.	Olfactory receptors in (A) receptor tyrosine (D) proton pumps			(B) ion channels (E) small GTPase	;	(C) G protein-	coupled r	receptors	
59.	HIV is the virus that continued in the enzyme's structure was strategy for stopping I (A) allosteric regulation (D) denaturation	s known, research HIV infections wei	ers begar e succes	n looking for drugs	s that v n exan nhibitic	would fit into the sple of what ph	ne active s	site and block it. If the	
60.	The Nobel Prize in ph	ysiology or medic	ine was a	awarded to Dr. Yos	shinori	Ohsumi for hi	s discove	ry of mechanisms for	
	(A) apoptosis (D) signal transduction	on in the nervous sy		(B) mitochondrial (E) autophagy	l fusion	and fission		(C) vesicular transp	ort
61.	In replication, which of (A) DNA ligase (B)	of the followings is B) DNA polymera		r polymerization o (C) DNA polymer		_		ng strand? (E) DNA helicase	
62.	Many coenzymes are ① FAD is derived fro ② Pyridoxal phosphor ③ Coenzyme A is de ④ 5'-Deoxyadenosy ⑤ NAD is derived fro (A) ①②③	om vitamin B ₆ . ate is derived from crived from pantotl I cobalamin is deri	vitamin nenic acid ved from	B ₁ .	ng state	ements are corr (D) 145	ect?	(E) 135	

03.	decrease which one of t	±	oenzyme unamme pyrop ctivities?	mosphate (177). Thiann	ne deficiency would
	(A) Fumarase	(B) Isocit	rate dehydrogenase	(C) Malate dehye	drogenase
	(D) Succinate dehydrog	genase (E) α -Ket	toglutarate dehydrogenas	se	
64.	Which one of the repres		oligopeptide shown bel	ow?	
		Ĭ Ĭ	H ₃ H O		
		へ			
		, , ,	Y Y	`0	
		 NH₂⁺ H	Ĭ I		
	но	NH ₃ + H	ОН		
	(A) Tyr-Ala-Thr	(B) Tyr-Ala-Ser	(C) Phe-Ala-Thr	(D) Phe-Gly-Cys	(E) Phe-Ala-Tyr
65.	 The total enzyme compared Formation of enzyme κ_{cat} reduces with compared Maximal velocity is 	oncentration studied at me-substrate complex d empetitive inhibition. reached when the enzyr	Michaelis-Menten kinetic each substrate concentrations not appreciably decreme-substrate complex is easured because most of the (C) 1245	ation is fixed in analysis case the concentration of equal to the total concentration	of enzyme kinetics. f substrate. ation of enzyme present.
66	The high free energy ch	nange for the hydrolysis	s of a thiol ester, as found	d in acetyl-CoA compar	ed with that for the
00.	hydrolysis of a simple e (A) the greater resonan (B) the gain in resonan (C) the high value for t	ester, is partly due to ce stability in a simple ce energy in the produc the bond energy in S-C favorable electrostatic	ester due to better π -elect, acetate bond interaction in the acetyl-	etron overlap in a CO lin	kage than in a CS linkage
67.	Phosphate (Pi) is transp	orted into the mitochor	ndria from the cytosol by	a phosphate carrier whi	ch is driven by the
	(A) hydrolysis of ATP (B) simultaneous trans (C) simultaneous trans (D) simultaneous trans (E) simultaneous trans	port of ADP into the mi port of H ⁺ out of the mi	tochondrion tochondrion		
68.	_		netabolism is NOT corre		
			catabolic or anabolic re		ma aratura araggura
	and pH.	ly required for cells to t	carry out reaction under	condition of moderate te	imperature, pressure,
			ls are reduced to form ac	•	the citric acid cycle.
	· ,	2	nesize ATP from ADP and the free energy change i		
<i>(</i> 0	. ,			_	
09.	 Membrane proteins Integral proteins ca Estrogen receptor is 	s can be extracted from n span the membrane w s a membrane protein.	brane proteins are correct cell membrane using soc with α-helical structure or	dium dodecyl sulfate. r β-sheet structure.	
			with membrane through oteins can be predicted for (C) 124		
70.	Which following post-t (A) Acetylation	ranslational modification (B) ADP-ribosylation	ons would NOT be found (C) Farnesylation	d in histone? (D) Methylation	(E) Monoubiquitylation
71.	In order to analyze tran ① Promoter luciferase ② Electrophoretic mo ③ Southern blotting ④ Chromatin immuno ⑤ DNA affinity purifi	e activity assay bility shift assay oprecipitation cation		ssion, the following expe	riments can be conducted.
	(A) 1345	(B) 1234	(C) 1235	(D) 1245	(E) 2345

72.	 Which of the following descriptions regarding DI (A) DNA transcription is catalyzed by RNA poly (B) The most common σ factor is σ⁷⁰ that binds (C) The consensus sequence of the promoter incl (D) Termination of RNA synthesis can be either (E) RNA polymerase catalyzes mononucleotide 	merase consisting of a sat the promoter sequence ludes a TATA box 10 barho-dependent or rho-in	multi-subunit ee. se pairs upstro		
73.	 Which of the following statements regarding lipid (A) Lipids are usually water soluble. (B) Fatty acids are relatively long-chain monoca (C) Fatty acids are generally stored as complex l (D) Glycerophospholipids are the major amphipa (E) Cis-form unsaturated fatty acids can change 	rboxylic acids with ever ipids called triacylglyce athic lipid components o	erols. of biological n		g from 12 to 20.
74.	 Which of the following statements regarding lipid (A) The degradation pathway consists of oxidation (B) Before that, fatty acids are activated by ester (C) Fatty acid degradation produces large amount (D) Fatty acids are degraded to acetyl-CoA by the α-oxidation. (E) Fatty acids are usually synthesized from the 	on, hydration, further or ification to coenzyme Ants of ATP. e sequential removal of	xidation, and t	-	process called
75.	· /	oprotein particle? (B) Cholesterol and tria (D) Cholesteryl ester an	, , ,	ds	
76.		ery high fidelity, due to (B) $3' \rightarrow 5'$ exonuclease (D) $5' \rightarrow 3'$ exonuclease	activity		
77.	 Which of the following statements about urea cycle. ① Urea is the end product of the urea cycle. ② Inherited defects in urea cycle cause hyperan ③ The synthesis of fumarate by the urea cycle of ④ The urea cycle begins with the formation of of ⑤ ATP is not consumed in urea cycle. (A) ②③④ (B) ②③⑤ 	nmonemia. can be used as a precurs		synthesis.	(E) 345
	 Which of the following statements is correct regard compare to that of normal individuals? (A) Blood glucose levels of diabetics tend to be a (B) Blood glucose levels of diabetics tend to be a (C) Blood glucose levels decrease more rapidly a (D) Blood glucose levels average the same level (E) None of the above. 	very stable, but at a high variable and higher. following a meal, often in diabetics, but reach h	ner level. dropping lowenigher peaks for	er than is to	lerable.
79.	One turn of the citric acid cycle generates (A) 2 FADH ₂ , 3 ATP, 1 NADH (B) (D) 1 FAD, 2 ATP, 3 NADH (E)	1 NAD ⁺ , 2 FADH ₂ , 1 A 1 FADH ₂ , 1 GTP, 2 NA	ATP (C)	1 GTP, 3 N	ADH, 1 FADH ₂
80.	 Which of the following statements about citric ac ① Pyruvate dehydrogenase links glycolysis to th ② The products of citric acid cycle are not used ③ The product of glycolysis forms acetyl-CoA: ④ Its intermediates are not used by other metab ⑤ The citric acid cycle is also called as the Krel (A) ①②③ (B) ①②④ 	he citric acid cycle. for the production of A for entering citric acid o olic reactions.	cycle.		(E) ①③⑤
81.	 β-oxidation of fatty acids, which one of the follow (A) Two NADH are produced for each acetyl-Co (B) Oxidation of an 18-carbon fatty acid produce (C) Uses only even—chain, saturated fatty acids a (D) Uses NADP⁺. (E) Occurs by a repeated sequence of four reaction 	oA. es six molecules of prop as substrates.			

82.	Which of the following is correct regarding the approvate + HCO₃⁻ + ATP → oxaloacetate + AT ① It requires the direct transport of oxaloacetate ② It utilizes the malate-aspartate shuttle in som ③ It is essential for gluconeogenesis. ④ Its reactants require the function of enzymes (A) ①② (B) ②③	OP + Pi te across the membrane. ne species.	the cytosol. (D) ①③	(E) ②④
83.	In the process of glycolysis, several reactions take ① Two molecules of pyruvate are produced by ② Under anaerobic condition, pyruvate can be ③ Hexokinase is involved in glycolysis. ④ Frucose-1,6-biphosphate is not generated from 5 ⑤ 1,3-Bisphosphoglycerate is generated from 6 ⑥ Eight ATP molecules are generated from the (A) ②④⑤⑥ (B) ①②③④	glycolysis. oxidized to CO ₂ , generated om glucose-1,6-biphosphiglycolysis.	ting more ATP molecules	
84.	 Which of the following descriptions regarding g (A) The genetic code is degenerate, and many c (B) The first two positions of a codon are more sense of the codon. (C) One codon consists of three bases. (D) Missense mutation changes only one codon (E) Frameshift mutations can be suppressed by 	enetic code is NOT corrected odes can specify a certain important, and mutation and sometimes does not	ect? n amino acid. in the third position ofter cause phenotypic change	n does not change the
85.	What moiety can NOT be found in a sphingomy (A) Sphingosine (B) Acetylcholine	velin? (C) Ceramide	(D) Fatty acid	(E) Phosphoric acid
86.	Which of the following compounds is NOT deri (A) Bile acids (B) Estrogens	ivative of cholesterol? (C) Androgens	(D) Glucocorticoids	(E) Prostaglandins
87.	 Which of the following statements regarding glu (A) Gluconeogenesis is the pathway for glucose (B) Conversion of pyruvate to phosphoenolpyru carboxykinase and is spontaneous. (C) Pyruvate carboxylase is mainly located in m (D) Glycogen is the glucose-storage polymer of (E) Pentose phosphate pathway provides an alternative process. 	e synthesis from noncarbo avate requires pyruvate ca nitochondria. Canimals.	ohydrate precursors such arboxylase and phosphoe	= -
88.	Collagen is the most abundant protein with over acids that exist in the mature collagens? (A) Methionine, cysteine, glycine (C) Glycine, proline, lysine (E) Serine, glycine, cysteine	28 distinct types in the a (B) Alanine, glutamate, (D) Methionine, phenyle	arginine	ne three necessary amino
89.	What two amino acids can be directly converted (A) Glutamine and asparagine (D) Alanine and glycine	each other by a single bi (B) Glycine and serine (E) Phenylalanine and a	(C) Leucine	and isoleucine
90.	Which of the following statements about protein (A) Hydrogen bonds are not important in the str (B) Hydrophobic amino acids generally are arra (C) In water soluble proteins, hydrophobic amin (D) Globular proteins are generally very loosely (E) Proteins consist of amino acids linked by di	ructure of proteins. unged on the surface. no acids are generally bury structured.	ried.	

後醫-英文

<u> </u>																				
題號	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
答案	D	A	В	A	D	В	D	В	В	E	A	Е	E	A	A	C	A	В	A	D
題號	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
答案	C	D	A	C	В	В	Е	Е	В	В	Е	В	D	C	A	Е	C	A	D	Е
題號	41	42	43	44	45	46	47	48	49	50										
答案	E	D	В	E	C	A	A	D	A	E										

後醫-物理及化學

NE MENTO																				
題號	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
答案	В	C	C	E	D	A	C	В	A	E	В	A	A	C	A	E	A	A	C	Е
題號	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
答案	C	C	D	A	C	В	D	A	A	D	A	E	Е	D	A	D	В	A	D	C
題號	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
答案	D	В	A	В	D	В	D	D	A	E	A	D	D	A	E	D	Е	D	D	D
題號	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
答案	В	E	В	В	A	E	D	В	D	A	В	C	D	A	D	В	D	D	D	A
題號	81	82	83	84	85	86	87	88	89	90	·		·							
答案	В	C	В	C	A	A	E	A	E	A										

後醫-普通生物及生化概論

題號	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
答案	C	C	В	C	D	В	D	В	C	E	В	В	C	E	C	D	D	C	В	В
題號	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
答案	В	D	E	В	C	В	C	C	A	В	C	В	C	В	В	A	В	C	E	В
題號	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
答案	В	A	D	A	Е	В	C	A	A	D	C	A	E	D	D	В	A	C	В	Е
題號	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
答案	C	C	Е	В	C	A	В	C	В	C	D	E	A	D	A	В	C	В	C	Е
題號	81	82	83	84	85	86	87	88	89	90				·					·	
答案	Е	В	D	Е	В	Е	В	C	В	C										