## 113學年度 學士後醫學系招生考試

## 普通生物及生化概論試題封面

## 考試開始鈴響前,請勿翻閱本試題!

### ★考試開始鈴響前,請注意:

- 一、除准考證、應考文具及一般手錶外;行動電話、穿戴式裝置及其他物品 均須放在臨時置物區。
- 二、請務必確認行動電話已取出電池或關機,行動電話及手錶的鬧鈴功能必須關閉。
- 三、就座後,不可擅自離開座位或與其他考生交談。
- 四、坐定後,雙手離開桌面,確認座位號碼、答案卡號碼與准考證號碼相同,以及抽屜中、桌椅下或座位旁均無非考試必需用品。如有任何問題,請立即舉手反應。
- 五、考試開始鈴響前,不得翻閱試題本或作答。
- 六、考試全程不得吃東西、喝水及嚼食口香糖。
- 七、違反上述規定,依「筆試規則及違規處理辦法」議處。

### ★作答說明:

- 一、考試時間:100分鐘。
- 二、本試題(含封面)共16頁,如有缺頁或毀損,應立即舉手請監試人員 補發。
- 三、本試題共90題,皆為單選題,共計150分;每題答錯倒扣,不作答不計分。
- 四、答題依題號順序劃記在答案卡上,寫在試題本上無效;答案卡限用 2B 鉛筆劃記,若未按規定劃記,致電腦無法讀取者,考生自行負責。
- 五、試題本必須與答案十一併繳回,不得攜出試場。

#### Choose one best answer for the following questions

【單選題】每題 1 分,共計 30 分,答錯 1 題倒扣 0.25 分,倒扣至本大題零分為止,未作答,不給分亦不扣分。1~15 題為普通生物,16~30 題為生化概論。

| 1. | -                                                                                                                                                                        | process of photosynt     |                 | -                | esponsible for  | absorbing ligh        | it energy and |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|------------------|-----------------|-----------------------|---------------|--|--|--|
|    | initiatii                                                                                                                                                                | ng the light-depende     | ent reactions?  |                  |                 |                       |               |  |  |  |
|    | (A)                                                                                                                                                                      | ATP synthase             |                 | (B)              | carbon dioxi    | de (CO <sub>2</sub> ) |               |  |  |  |
|    | (C)                                                                                                                                                                      | water (H <sub>2</sub> O) |                 | (D)              | antenna pign    | nents in photos       | ystem II      |  |  |  |
|    | (E)                                                                                                                                                                      | rubisco enzyme           |                 |                  |                 |                       |               |  |  |  |
| 2. | What is                                                                                                                                                                  | s the sexual process     | in Parameci     | um?              |                 |                       |               |  |  |  |
|    | (A)                                                                                                                                                                      | conjugation              | (B)             | fission          | (C              | c) budding            |               |  |  |  |
|    | (D)                                                                                                                                                                      | meiotic division         | (E)             | multiple divisi  | ion             |                       |               |  |  |  |
| 3. | The Ma                                                                                                                                                                   | alpighian tubules are    | e important fo  | or excretory fur | nction in       | _•                    |               |  |  |  |
|    | (A)                                                                                                                                                                      | birds                    | (B)             | flatworms        | (C              | c) insects            |               |  |  |  |
|    | (D)                                                                                                                                                                      | jellyfish                | (E)             | frog             |                 |                       |               |  |  |  |
|    | *****                                                                                                                                                                    |                          |                 | 压凸               |                 |                       |               |  |  |  |
| 4. | Which of the following molecules is produced by the citric acid cycle participating in the electron transport chain on the mitochondrial inner membrane to generate ATP? |                          |                 |                  |                 |                       |               |  |  |  |
|    | _                                                                                                                                                                        |                          |                 |                  | _               |                       |               |  |  |  |
|    | (A)                                                                                                                                                                      | GAPDH (B)                | FADH            | (C) ADP          | (D) NA          | ADH (E)               | NADPH         |  |  |  |
| 5. | What p                                                                                                                                                                   | orinciple does nonra     | andom matin     | g, such as asso  | ortative mating | g, violate in th      | e context of  |  |  |  |
|    | popula                                                                                                                                                                   | tion genetics?           |                 |                  |                 |                       |               |  |  |  |
|    | (A)                                                                                                                                                                      | the principle of inc     | lependent ass   | sortment         |                 |                       |               |  |  |  |
|    | (B)                                                                                                                                                                      | the Hardy-Weinber        | rg principle    |                  |                 |                       |               |  |  |  |
|    | (C)                                                                                                                                                                      | the principle of seg     | gregation       |                  |                 |                       |               |  |  |  |
|    | (D)                                                                                                                                                                      | the law of thermod       | lynamics        |                  |                 |                       |               |  |  |  |
|    | (E)                                                                                                                                                                      | the principle of un      | iformitarianis  | sm 7             |                 |                       |               |  |  |  |
| 6. | More t                                                                                                                                                                   | han 80% of the worl      | ld's staple foo | od comes from    |                 |                       |               |  |  |  |
|    | (A)                                                                                                                                                                      | bryophytes               | (B)             | monocots         | (0              | c) lycophytes         |               |  |  |  |
|    | (D)                                                                                                                                                                      | eudicots                 | (E)             | gymnosperms      |                 |                       |               |  |  |  |
| 7. | In plan                                                                                                                                                                  | ts, lateral root forma   | ation is initia | ted from         |                 |                       |               |  |  |  |
|    | (A)                                                                                                                                                                      | cortex                   | (B)             | endodermis       | (0              | c) epidermis          |               |  |  |  |
|    | (D)                                                                                                                                                                      | pericycle                | (E)             | pith             |                 |                       |               |  |  |  |
| 8. | Red tid                                                                                                                                                                  | les in water bodies a    | re caused by    | ·                |                 |                       |               |  |  |  |
|    | (A)                                                                                                                                                                      | bacteria                 | (B)             | cyanobacteria    | (0              | c) dinoflagell        | ates          |  |  |  |
|    | (D)                                                                                                                                                                      | green algae              | (E)             | red algae        |                 |                       |               |  |  |  |

## 113 學年度學士後醫學系招生考試

### 普通生物及生化概論試題

| 9. In the DNA. | bacterial CRISPR-Cas sys                                                                                         | tem, C                  | Cas protein intera | acts with _  | to target inva     | ading phage  |  |  |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|--------------|--------------------|--------------|--|--|--|--|--|
| (A)            | CRISPR RNA                                                                                                       | (B)                     | CRISPR DNA         |              | (C) CRISPR nu      | clease       |  |  |  |  |  |
| (D)            | CRISPR peptide                                                                                                   | (E)                     | restriction enzy   | me           |                    |              |  |  |  |  |  |
|                | Hershey and Martha Chas                                                                                          |                         | -                  | -            |                    | Γ2 phage in  |  |  |  |  |  |
|                | ed bacterial cells in their ex                                                                                   |                         |                    | demonstra    | ted that           |              |  |  |  |  |  |
| (A)            | DNA replication is semic                                                                                         | conser                  | vative             |              |                    |              |  |  |  |  |  |
| (B)            | · ·                                                                                                              | genetic material is DNA |                    |              |                    |              |  |  |  |  |  |
| (C)            | DNA is a double helix                                                                                            |                         |                    |              |                    |              |  |  |  |  |  |
| (D)            | there is a replication fork                                                                                      |                         | g cell division    |              |                    |              |  |  |  |  |  |
| (E)            | DNA is in the linear form                                                                                        | 1                       |                    |              |                    |              |  |  |  |  |  |
|                | 11. Sleeping pills like benzodiazepines mainly induce calmness and sedation by enhancing which neurotransmitter? |                         |                    |              |                    |              |  |  |  |  |  |
| (A)            |                                                                                                                  | nate                    | (C) acetylcho      | line (D)     | dopamine (E)       | GABA         |  |  |  |  |  |
|                | 12. Which of the following molecules and ions does <b>NOT</b> act as secondary messenger in signaling pathways?  |                         |                    |              |                    |              |  |  |  |  |  |
| (A)            | cAMP                                                                                                             | (B)                     | receptor tyrosir   | ne kinase    | (C) inositol tripl | hosphate     |  |  |  |  |  |
| (D)            | diacylglycerol                                                                                                   | (E)                     | calcium            |              |                    |              |  |  |  |  |  |
| 13. Non-fl     | lowering vascular plants in                                                                                      | clude                   | 1-1-1-             |              |                    |              |  |  |  |  |  |
|                | ngiosperms ② ferns ③                                                                                             |                         |                    | iverworts    | ⑤ mosses           |              |  |  |  |  |  |
| (A)            | 2345 (B) 234                                                                                                     | 4                       | (C) 23             | (D)          | 235 (E)            | 45           |  |  |  |  |  |
| 14. The ch     | naracteristics or structures                                                                                     | only f                  | found in angiosp   | erms but N   | OT in gymnosper    | rms include  |  |  |  |  |  |
|                | ouble fertilization ② floonnual growth habit                                                                     | wer                     | ③ vessel eleme     | nt 4 sie     | ve tube            |              |  |  |  |  |  |
| (A)<br>(D)     | 12345<br>1234                                                                                                    | (B)<br>(E)              | 1245<br>234        |              | (C) 1235           |              |  |  |  |  |  |
| 15. In one     | of Mendel's experiments,                                                                                         | he cro                  | ossed pea plants   | that were to | rue-breeding for v | iolet flower |  |  |  |  |  |
| color          | with plants true-breeding f                                                                                      | or whi                  | ite flower color.  | What was     | the phenotype rati | o of flower  |  |  |  |  |  |
| color i        | n the F2 generation?                                                                                             |                         |                    |              |                    |              |  |  |  |  |  |
| (A)            | 100% violet                                                                                                      |                         | (B)                | 100% whi     | ite                |              |  |  |  |  |  |
| (C)            | 75% violet and 25% whi                                                                                           | te                      | (D)                | 50% viole    | et and 50% white   |              |  |  |  |  |  |
| (E)            | 25% violet and 75% whi                                                                                           | te                      |                    |              |                    |              |  |  |  |  |  |

| 16. The pr | osthetic group                                                                                    | of mit                                                                                     | ochondrial  | NADH       | dehydro     | genase is _  | ·               |          |                                       |  |  |  |
|------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------|------------|-------------|--------------|-----------------|----------|---------------------------------------|--|--|--|
| (A)        | FMN                                                                                               | (B)                                                                                        | FAD         | (C)        | NADH        | (D)          | NADPH           | (E)      | Heme                                  |  |  |  |
| 17. Which  | of the follow                                                                                     | ing state                                                                                  | ements is l | FALSE'     | ?           |              |                 |          |                                       |  |  |  |
| (A)        |                                                                                                   |                                                                                            |             |            |             |              |                 |          |                                       |  |  |  |
|            | pIs.                                                                                              |                                                                                            |             |            |             |              |                 |          |                                       |  |  |  |
| (B)        | Size exclusion chromatography separates proteins based on molecular weight.                       |                                                                                            |             |            |             |              |                 |          |                                       |  |  |  |
| (C)        | SDS polyactive weight.                                                                            | SDS polyacrylamide gel electrophoresis separates proteins based on their molecular weight. |             |            |             |              |                 |          |                                       |  |  |  |
| (D)        | Ion exchang                                                                                       | Ion exchanger chromatography separates proteins based on their pIs.                        |             |            |             |              |                 |          |                                       |  |  |  |
| (E)        | The column                                                                                        | matrix                                                                                     | with boun   | d anion    | ic groups   | is called c  | ation exchar    | nger.    |                                       |  |  |  |
| 18. A sequ | 18. A sequence of amino acids in a certain protein is found to be –Ser–Gly–Pro–Gly–. The sequence |                                                                                            |             |            |             |              |                 |          |                                       |  |  |  |
| is mos     | t probably par                                                                                    | t of a(n                                                                                   | )           |            |             |              |                 |          |                                       |  |  |  |
| (A)        | antiparallel                                                                                      | β sheet                                                                                    | (B)         | paral      | lelβshee    | t            | (C) $\alpha$ he | elix     |                                       |  |  |  |
| (D)        | $\alpha$ sheet                                                                                    |                                                                                            | (E)         | β turn     | n           |              |                 |          |                                       |  |  |  |
| 19. Conce  | rning human p                                                                                     | orion pr                                                                                   | otein amyl  | oid, the   | protein a   | ggregation   | n is due to th  | ne forma | ition of                              |  |  |  |
| (A)        | huge circled                                                                                      | α helix                                                                                    |             |            |             |              |                 |          |                                       |  |  |  |
| (B)        | large paralle                                                                                     | lβshee                                                                                     | et          |            |             |              |                 |          |                                       |  |  |  |
| (C)        | extensive re                                                                                      | gion of                                                                                    | α helix an  | d little f | 3 sheet     |              |                 |          |                                       |  |  |  |
| (D)        | large scale o                                                                                     | of α heli                                                                                  | x embeddi   | ng amy     | lase        |              |                 |          |                                       |  |  |  |
| (E)        | $\alpha$ helix and $\beta$                                                                        | little β s                                                                                 | sheet assoc | iated w    | ith polysa  | ccharide     |                 |          |                                       |  |  |  |
| 20. Which  | amino acids i                                                                                     | in prote                                                                                   | ins can un  | dergo po   | ost-transla | ational fari | nesylation?     |          |                                       |  |  |  |
| (A)        | cysteine                                                                                          | (B)                                                                                        | glycine     | (C)        | lysine      | (D)          | asparagine      | (E)      | serine                                |  |  |  |
| 21 Which   | of the follow                                                                                     | in a vita                                                                                  | ming onton  |            |             | to hind to   |                 | nton on  | dto                                   |  |  |  |
|            | te gene expres                                                                                    |                                                                                            | mins enter  | the cen    | liucieus    | to billa to  | nuclear rece    | pior and | 1 10                                  |  |  |  |
| (A)        | riboflavin aı                                                                                     |                                                                                            | nin K       |            | (B)         | pantothe     | nic acid and    | vitamir  | ı E                                   |  |  |  |
| (C)        | retinol and t                                                                                     |                                                                                            |             |            | (D)         | -            | and pantoth     |          |                                       |  |  |  |
| (E)        | retinoic acid                                                                                     | l and vit                                                                                  | tamin D     |            | ` ,         |              | •               |          |                                       |  |  |  |
| 22 In the  | nucconos of or                                                                                    |                                                                                            | a inhihita  | · tha V    | daaraa      | gag and th   | a annovant V    | daama    | , , , , , , , , , , , , , , , , , , , |  |  |  |
| •          | presence of ar<br>giving two par                                                                  | •                                                                                          |             |            |             |              |                 |          |                                       |  |  |  |
| (A)        | competitive                                                                                       |                                                                                            |             | iiie vv ca | (B)         | mixed in     |                 | noi cal  | iou.                                  |  |  |  |
| (C)        | noncompeti                                                                                        |                                                                                            |             |            | (D)         |              | etitive inhibi  | tor      |                                       |  |  |  |
| (E)        | suicide inhil                                                                                     |                                                                                            |             |            | · ,         | 1            |                 |          |                                       |  |  |  |

| 23  | Which   | of the following proteins is    | : NOT          | Γ involved in D          | NA replication?                         |
|-----|---------|---------------------------------|----------------|--------------------------|-----------------------------------------|
| 25. | (A)     | nuclease                        | , 1 ( )        | (B)                      | gyrase                                  |
|     | (C)     | helicase                        |                | (D)                      | single-strand binding protein           |
|     | (E)     | primase                         |                | (-)                      |                                         |
| 24. | Which   | non-histone chromosomal         | protei         | in helps holding         | sister chromatids together immediately  |
|     |         | eplication?                     |                |                          | Ž.                                      |
|     | (A)     | condensins                      | (B)            | cohesins                 | (C) helicase                            |
|     | (D)     | topoisomerase                   | (E)            | telomerase               | <b>、</b>                                |
| 25. | Which   | of the following activities of  | f <i>E. co</i> | oli DNA polymer          | rase I allows it to remove RNA primers  |
|     | during  | lagging strand synthesis?       |                |                          | -                                       |
|     | (A)     | 3' to 5' exonuclease activity   | y              | (B)                      | 3' to 5' polymerase activity            |
|     |         | 5' to 3' exonuclease activit    |                | (D)                      | 5' to 3' polymerase activity            |
|     | (E)     | Endonuclease activity           |                |                          |                                         |
| 26. | Which   | glycosidic bond between to      | wo mo          | onosaccharide n          | nolecules is FALSE?                     |
|     |         | $\alpha(1\rightarrow 1)$        | (B)            | $\alpha(1\rightarrow 4)$ | (C) $\alpha(1\rightarrow 6)$            |
|     | (D)     | $\beta(1\rightarrow 1)$         | (E)            | $\beta(1\rightarrow 4)$  |                                         |
| 27. | Becaus  | se skeletal muscle do not co    | ntain          | , glycoge                | n in skeletal muscle cannot be a source |
|     | of bloo | od glucose.                     |                |                          |                                         |
|     | (A)     | glucose-6-phosphatase           |                | (B)                      | glycogen phosphorylase                  |
|     | (C)     | phosphoglucomutase              |                | (D)                      | glucose 6-phosphate dehydrogenase       |
|     | (E)     | phosphorylase                   |                |                          |                                         |
| 28. |         | of the following conditions     | s conc         | erning de novo           | purine ribonucleotide synthesis is      |
|     | FALSI   | E?                              |                |                          |                                         |
|     | (A)     | Glutamate is a direct sour      | ce of          | nitrogen atom fo         | or the purine ring.                     |
|     | (B)     | The utility of PRPP is con      | nmitte         | ed step in the sy        | nthesis of phosphoribosylamine.         |
|     | (C)     | Aspartate is a direct source    | e of n         | nitrogen atom fo         | r the purine ring.                      |
|     | (D)     | IMP is an intermediate in       | the sy         | nthesis of GMF           | and AMP.                                |
|     | (E)     | De novo synthesis of puri       | ne rib         | onucleotide wo           | uld be inhibited by methotrexate.       |
| 29. | Which   | compound is <b>NOT</b> an inter | rmedi          | ate for the biosy        | enthesis of cholesterol?                |
|     | (A)     | mevalonate                      |                | (B)                      | isopentenyl pyrophosphate               |
|     | (C)     | farnesyl pyrophosphate          |                | (D)                      | squalene                                |
|     | (E)     | cholate                         |                |                          |                                         |

| 20  | XX71 1 C        | 1 C 11 '      |                | 4 1 '             |             | TDIE  |
|-----|-----------------|---------------|----------------|-------------------|-------------|-------|
| 3() | which of t      | rne tollowing | statements abo | 111 I1 <b>n</b> o | nroteins is | IKURZ |
| 50. | *** 111011 01 0 |               | btatements acc | at Hpc            | proteins is | III.  |

- (A) Chylomicrons carry the dietary fat from peripheral tissues to the intestine.
- (B) VLDL carries TG from the liver to peripheral tissues.
- (C) VLDL contains ApoB-100.
- (D) Chylomicrons contain ApoE.
- (E) LDL contains ApoB-48.

## 【單選題】每題 2 分,共計 120 分,答錯 1 題倒扣 0.5 分,倒扣至本大題零分為止,未作答,不給分亦不扣分。31~60 題為普通生物,61~90 題為生化概論。

- 31. In evolutionary biology, what is adaptive radiation, and where is it most likely to occur?
  - (A) It is the rapid evolution of a single species into multiple forms to fill different ecological niches, often seen in isolated environments like islands.
  - (B) It is the process by which species adapt to urban environments.
  - (C) It is the gradual change of a species over time in response to environmental changes.
  - (D) It refers to the radiation of electromagnetic waves by organisms.
  - (E) It is the diversification of species to occupy the same ecological niche.

| 32. In the life cycle of true plants, the | are diploid.              |        |
|-------------------------------------------|---------------------------|--------|
| ① gamete ② gametophyte ③ spe              | ore 4 sporophyte 5 zygote |        |
| (A) 2345 (B) 245                          | (C) 235 (D) 45            | (E) 25 |

- 33. Which of the followings is **NOT** a role of carbohydrates in the extracellular matrix?
  - (A) providing structural support to plant cell walls
  - (B) facilitating cell adhesion in animal tissues
  - (C) acting as a lubricant in joint movements
  - (D) regulating cell growth and proliferation
  - (E) storing genetic information in cells
- 34. How does the sodium-potassium pump contribute to the negative charge inside a cell?
  - (A) by expelling more sodium ions than potassium ions it brings in
  - (B) by absorbing more sodium ions than potassium ions it expels
  - (C) by maintaining an equal balance of sodium and potassium ions
  - (D) by converting sodium ions into potassium ions inside the cell
  - (E) by moving anions in and out of the cell in addition to cations
- 35. Which of the followings is a characteristics that can be found in fungi?
  - (A) They perform photosynthesis.
    - (B) They have a cellulose cell wall.
  - (C) They store energy as glycogen.
- (D) They are primarily autotrophic.
- (E) They reproduce only asexually.

| oped viruses are sensitive to ethan  | nol. Which of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ne following viruses cannot be prevented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| anol-base hand disinfection?         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Corona virus                         | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Influenza virus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Measles virus                        | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Respiratory syncytial virus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dengue virus                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| of the following plant hormon        | es does NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | regulate seed germination positively or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| vely?                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| auxin (B)                            | gibberellins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (C) abscisic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| brassinosteroids (E)                 | strigolactones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| unique feature is found in the phy   | ylum Cnidaria,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | such as jellyfish and sea anemones?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| exoskeleton made of chitin           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| vascular tissue for nutrient trans   | sport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| notochord during some stage of       | their life cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nematocysts for defense and cap      | oturing prey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| segmented body plan                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ding prokaryotic gene regulation,    | what is the func                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | etion of the lac operon in E. coli?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| metabolize lactose.                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| It prevents lactose metabolism v     | when glucose is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| It enhances the binding of RNA       | polymerase to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DNA, regardless of lactose presence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| It is involved in the replication of | of the bacterial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chromosome.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| anatomy is a specialized structure   | e in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C <sub>4</sub> plants (B)            | C <sub>3</sub> plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (C) CAM plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| parasitic plants (E)                 | epiphytic plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| of the following characteristics is  | s common to all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | prokaryotes?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| They possess a nucleus.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| They have membrane-bound organic     | ganelles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Their DNA is not enclosed with       | in a membrane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| They all have a cell wall made of    | of peptidoglycar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| They reproduce exclusively by        | sexual reproduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | etion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                      | Corona virus Measles virus Dengue virus  of the following plant hormon vely? auxin unique feature is found in the phy exoskeleton made of chitin vascular tissue for nutrient trans notochord during some stage of nematocysts for defense and car segmented body plan  ling prokaryotic gene regulation, It codes for enzymes involving It is activated only when lactor metabolize lactose.  It prevents lactose metabolism v It enhances the binding of RNA It is involved in the replication of anatomy is a specialized structure C4 plants parasitic plants  (E)  of the following characteristics is They possess a nucleus. They have membrane-bound or Their DNA is not enclosed with They all have a cell wall made of | Corona virus  Measles virus  Dengue virus  of the following plant hormones does NOT  vely?  auxin  (B) gibberellins  brassinosteroids  (E) strigolactones  unique feature is found in the phylum Cnidaria,  exoskeleton made of chitin  vascular tissue for nutrient transport  notochord during some stage of their life cycle  nematocysts for defense and capturing prey  segmented body plan  ling prokaryotic gene regulation, what is the func  It codes for enzymes involving in the synthesis  It is activated only when lactose is present an  metabolize lactose.  It prevents lactose metabolism when glucose is  It enhances the binding of RNA polymerase to  It is involved in the replication of the bacterial  anatomy is a specialized structure in  C4 plants  (B) C3 plants  parasitic plants  (C4) epiphytic plant  of the following characteristics is common to all |

| 42. What i | s a biodiversity hotspot?                                                                    |  |  |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| (A)        | a region with a moderate level of species diversity                                          |  |  |  |  |  |  |  |  |
| (B)        | an area where invasive species have caused the extinction of native species                  |  |  |  |  |  |  |  |  |
| (C)        | a region that experiences a high rate of habitat loss                                        |  |  |  |  |  |  |  |  |
| (D)        | a location where biodiversity is low but species are well adapted to extreme environments    |  |  |  |  |  |  |  |  |
| (E)        | an area with a high concentration of endemic species that is experiencing high rates of      |  |  |  |  |  |  |  |  |
| ( )        | habitat loss                                                                                 |  |  |  |  |  |  |  |  |
| 43 Which   | of the following traits is most commonly associated with protists?                           |  |  |  |  |  |  |  |  |
| (A)        | They are all multicellular organisms.                                                        |  |  |  |  |  |  |  |  |
| (A)<br>(B) | They are all photosynthetic.                                                                 |  |  |  |  |  |  |  |  |
| (C)        | They belong to a single, monophyletic kingdom.                                               |  |  |  |  |  |  |  |  |
| ` ′        | They exhibit a wide range of nutritional strategies.                                         |  |  |  |  |  |  |  |  |
| (D)        |                                                                                              |  |  |  |  |  |  |  |  |
| (E)        | They all have a rigid cell wall.                                                             |  |  |  |  |  |  |  |  |
| 44. Under  | transmission electron microscope (TEM), there is an organelle that often exhibits a granular |  |  |  |  |  |  |  |  |
| or crys    | talline core, believed to be a dense collection of enzyme molecules. Which of the following  |  |  |  |  |  |  |  |  |
| enzym      | es is most likely to be found in that crystal?                                               |  |  |  |  |  |  |  |  |
| (A)        | rubisco (B) PEP carboxylase (C) aldolase                                                     |  |  |  |  |  |  |  |  |
| (D)        | alcohol dehydrogenase (E) catalase                                                           |  |  |  |  |  |  |  |  |
| 45 Which   | mechanism allows for the stable coexistence of multiple species within the same ecological   |  |  |  |  |  |  |  |  |
| comm       |                                                                                              |  |  |  |  |  |  |  |  |
| (A)        | competitive exclusion (B) resource partitioning                                              |  |  |  |  |  |  |  |  |
| (C)        | unlimited resource availability (D) identical niche requirements for all species             |  |  |  |  |  |  |  |  |
| (E)        | absence of predators within the community                                                    |  |  |  |  |  |  |  |  |
| (E)        | absence of predators within the community                                                    |  |  |  |  |  |  |  |  |
| 46. Which  | of the following statements about circadian rhythm is FALSE?                                 |  |  |  |  |  |  |  |  |
| (A)        | Circadian rhythm is an intrinsic biological clock that can be synchronized by external       |  |  |  |  |  |  |  |  |
|            | day/night cycles.                                                                            |  |  |  |  |  |  |  |  |
| (B)        | Cyclic alterations of human body temperature also reflect circadian rhythm.                  |  |  |  |  |  |  |  |  |
| (C)        | If an organism is kept in a constant environment, such as continuous light, its circadian    |  |  |  |  |  |  |  |  |
|            | rhythm will remain precisely 24 hours.                                                       |  |  |  |  |  |  |  |  |
| (D)        | Melatonin secretion also follows circadian rhythm, with its concentration peak occurring     |  |  |  |  |  |  |  |  |
|            | around 4:00 AM.                                                                              |  |  |  |  |  |  |  |  |
| (E)        | Both phytochromes and blue light photoreceptors can entrain circadian rhythm in plants.      |  |  |  |  |  |  |  |  |
|            |                                                                                              |  |  |  |  |  |  |  |  |
| 47. Which  | of the following vertebrates is first characterized by the presence of an amniotic egg?      |  |  |  |  |  |  |  |  |
| (A)        | amphibians (B) fishes (C) reptiles (D) mammals (E) chordates                                 |  |  |  |  |  |  |  |  |

### 113 學年度學士後醫學系招生考試

### 普通生物及生化概論試題

- 48. What is the primary role of the vestibular system in humans?
  - (A) to detect and process visual information
  - (B) to maintain balance and spatial orientation
  - (C) to facilitate communication through speech and language
  - (D) to process and interpret sounds
  - (E) to detect and respond to changes in temperature
- 49. Which of the following reactions increases the proton gradient across the thylakoid membrane in the light for chemiosmosis?
  - 1 photolysis of water
  - (2) electron transport through plastoquinone
  - (3) electron transport through plastocyanin
  - 4 electron transport from ferredoxin to NADP+
  - (5) fixation of CO<sub>2</sub> through Rubisco
    - (A) ①②

(B) ①③

(C) 123

- (D) (1)(2)(3)(4)
- (E) (E
- 50. Please select the TRUE order of human fertilization.
  - A. cortical reaction
- B. acrosomal reaction
- C. formation of perivitelline space

- D. calcium release
  - (A)  $A \rightarrow B \rightarrow C \rightarrow D$
- (B)  $B \rightarrow D \rightarrow A \rightarrow C$
- (C)  $B \rightarrow C \rightarrow A \rightarrow D$

- (D)  $D \rightarrow B \rightarrow C \rightarrow A$
- (E)  $D \rightarrow C \rightarrow B \rightarrow A$
- 51. Which of the following statements about genetically modification is FALSE?
  - (A) Bt (Bacillus thuringiensis) maize is a genetically modified organism (GMO) with a transgene encoding Bt toxin, which can prevent maize from insect feeding.
  - (B) Golden rice is a GMO created to address vitamin A deficiency.
  - (C) Soil bacteria *Agrobacterium* is commonly used as a tool for transferring exogenous genes into plants for GMO generation.
  - (D) Purple sweet potatoes are GMOs in which anthocyanin biosynthetic genes are overexpressed.
  - (E) Papaya in Hawaii is genetically engineered for resistance to a ringspot virus.
- 52. Which of the following statements is TRUE for Gram-negative bacteria?
  - (A) Gram-negative bacteria cell wall is lack of lipopolysaccharide.
  - (B) Gram-negative bacteria generally contain a capsule outside the cell wall.
  - (C) Gram-negative bacteria contain endotoxin, whereas Gram-positive bacteria do not.
  - (D) Gram-negative bacteria show a darker color than Gram-positive bacteria.
  - (E) Gram-negative bacteria have thicker peptidoglycan than Gram-positive bacteria.

## 113 學年度學士後醫學系招生考試

### 普通生物及生化概論試題

| 53. Which      | of the following organs is    | specia  | alized root in pla | ants?              |                          |
|----------------|-------------------------------|---------|--------------------|--------------------|--------------------------|
| (A)            | rhizome                       | (B)     | stolon             | (C)                | tuber                    |
| (D)            | pneumatophore                 | (E)     | petiole            |                    |                          |
| 54. Which      | of the following cells abur   | ndantl  | y express both to  | he MHC I and M     | HC II molecules?         |
| (A)            | macrophage and dendrition     | c cell  | (B)                | macrophage an      | d neutrophil             |
| (C)            | B lymphocyte and macro        | phage   | (D)                | B lymphocyte a     | and neutrophil           |
| (E)            | neutrophil and dendritic of   | cell    |                    |                    |                          |
| 55. Which      | of the following characteri   | istics  | are common in a    | archaea and bacte  | eria?                    |
| $\bigcirc$ cor | nposition of the cell wall    |         |                    |                    |                          |
| ② abs          | sence of histones             |         |                    |                    |                          |
| 3 lac          | k of a nuclear envelope       |         |                    |                    |                          |
| 4 pre          | esence of introns in genes    |         |                    |                    |                          |
| ⑤ pre          | esence of RNA polymerase      |         |                    |                    |                          |
| (A)            | 134                           | (B)     | 2345               | (C)                | 245                      |
| (D)            | 234                           | (E)     | 345                |                    |                          |
|                |                               |         |                    |                    |                          |
|                | of the following hormones     |         |                    | gland to promote   | the synthesis of glucose |
|                | oncarbohydrates in respons    |         |                    |                    |                          |
| (A)            | aldosterone                   | (B)     | epinephrine        | (C)                | cortisol                 |
| (D)            | glucocorticoid                | (E)     | adrenocorticot     | ropic hormone      |                          |
| 57. Which      | of the following hormone      | es are  | synthesized in     | the hypothalamı    | as and released from the |
| posteri        | or pituitary?                 |         |                    |                    |                          |
| (A)            | prolactin, oxytocin           |         | (B)                | oxytocin, antid    | iuretic hormone          |
| (C)            | luteinizing hormone, prol     |         | (D)                | follicle-stimula   | ting hormone, oxytocin   |
| (E)            | antidiuretic hormone, pro     | lactin  |                    |                    |                          |
| 58. Which      | part of the digestive tract s | secrete | es appetite supp   | ressant to counter | r appetite stimulant?    |
| (A)            | stomach                       | (B)     | pancreas           | (C)                | liver                    |
| (D)            | small intestine               | (E)     | duodenum           |                    |                          |
| 59. Which      | kind of fungus commonly       | cause   | es athlete's foot? |                    |                          |
| (A)            | Ascomycetes                   | (B)     | Basidiomycete      | es (C)             | Mucoromycetes            |
| (D)            | Oomycetes                     | (E)     | Zoopagomyce        | tes                |                          |
|                |                               |         |                    |                    |                          |

| 60. Which of the following concepts is illustrated as the following concepts as the following concepts are illustrated as the following concepts as the following concepts are illustrated as the following c | strated by a phylogenetic tree that depicts the evolutionary |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| relationships among various species?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |

- (A) the morphological similarities among species
- (B) the biochemical pathways shared by different species
- (C) the reproductive mechanisms of different species
- (D) the geographical distribution of species
- (E) the evolutionary history and lineage of organisms

#### 61. Which of the followings are used to determine the primary structure of proteins?

- (1) size exclusion chromatography (2) SDS polyacrylamide gel electrophoresis
- 3 Edman degradation 4 circular dichroism 5 analysis of amino acid composition
- (A) 12 (B) 23 (C) 34 (D) 45 (E) 35
- 62. Which structural motifs or domains are likely to interact with DNA?
  - ① helix-turn-helix ② EF-hand ③ immunoglobulin fold ④ homeodomain ⑤ zinc finger
    - (A) 123 (B) 134 (C) 235 (D) 145 (E) 345
- 63. Which of the following statements regarding oxygen-binding to hemoglobin is **TRUE**?
  - (A) H<sup>+</sup> increases the affinity of hemoglobin for oxygen.
  - (B) BPG competes with  $O_2$  for binding to the heme groups of hemoglobin.
  - (C) Fetal hemoglobin binds O<sub>2</sub> with higher affinity due to no bound BPG.
  - (D) CO binds with lower affinity to fetal hemoglobin than to adult hemoglobin.
  - (E) CO binding lowers the affinity of hemoglobin to  $O_2$ .

#### 64. Which statement for the allosteric regulation of an enzyme activity is **FALSE**?

- (A) The two principal models for allosteric enzyme behaviors are called the concerted and sequential models.
- (B) The bound allosteric effector could be homotropic or heterotropic.
- (C) There are two forms, taut T form and relaxed R form.
- (D) In a sequential model, binding substrate to one subunit induces the other subunit to adopt R form.
- (E) Negative cooperativity could be observed in concerted model.

#### 65. Which statement about the pentose phosphate pathway (PPP) is **FALSE**?

- (A) It provides NADH for biosynthesis reaction.
- (B) It operates exclusively in the cytosol.
- (C) It metabolizes the dietary pentose sugar.
- (D) It provides ribose-5-phosphate for nucleotide biosynthesis.
- (E) It provides ribose-5-phosphate for histidine biosynthesis.

| 66. Photop                                                 | hosphorylation and oxidati                                                             | ve ph   | osphorylation appear t    | to be gen  | erally similar processes,  |  |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------|---------|---------------------------|------------|----------------------------|--|--|--|--|
| both co                                                    | onsisting of ATP synthesis of                                                          | ouple   | ed to the transfer of ele | ectrons al | ong an electron carrier    |  |  |  |  |
| chain. Which statement is <b>FALSE</b> for both processes? |                                                                                        |         |                           |            |                            |  |  |  |  |
| (A)                                                        | (A) Both contain cytochromes and flavins in their electron carrier chains.             |         |                           |            |                            |  |  |  |  |
| (B)                                                        | Both processes are associa                                                             | ated v  | vith membranous elem      | nents of t | he cell.                   |  |  |  |  |
| (C)                                                        | Both use oxygen as a term                                                              | ninal ( | electron acceptor.        |            |                            |  |  |  |  |
| (D)                                                        | Each represents the major                                                              | route   | of ATP synthesis in the   | hose cell  | s in which it is found.    |  |  |  |  |
| (E)                                                        | Protons are pumped from the inside to the outside of both mitochondria and chloroplast |         |                           |            |                            |  |  |  |  |
|                                                            | membranes.                                                                             |         |                           |            |                            |  |  |  |  |
| 67. Which                                                  | statement is <b>FALSE</b> for the                                                      | e stru  | ctural features of nucl   | eotides?   |                            |  |  |  |  |
| (A)                                                        | There are two types of bas                                                             |         |                           |            |                            |  |  |  |  |
| (B)                                                        | The most common form of                                                                | -       |                           |            |                            |  |  |  |  |
| (C)                                                        | DNA is more stable than l                                                              | RNA.    |                           |            |                            |  |  |  |  |
| (D)                                                        | An A-T base pair has two                                                               | H-bo    | nds, and a G-C base p     | air has th | ree H-bonds.               |  |  |  |  |
| (E)                                                        | Cytosine, uracil, and thym                                                             |         |                           |            |                            |  |  |  |  |
|                                                            | pyrimidines.                                                                           |         |                           |            |                            |  |  |  |  |
|                                                            |                                                                                        |         |                           |            |                            |  |  |  |  |
|                                                            | of the following enzymes a                                                             |         |                           |            | _                          |  |  |  |  |
| _                                                          | cose-6-phosphatase ② p                                                                 | hospł   | nofructokinase 3 p        | yruvate k  | tinase 4 hexokinase        |  |  |  |  |
| ⑤ fru                                                      | ctose-1,6-bisphosphatase                                                               |         |                           |            |                            |  |  |  |  |
| (A)                                                        | ①② (B) ②③                                                                              |         | (C) 34                    | (D) 4(     | (E) ①⑤                     |  |  |  |  |
| 69. To iden                                                | tify the groups of N-linked                                                            | l glyc  | ans in a mixed sample     | ,          | can be used to achieve it. |  |  |  |  |
| (A)                                                        | mass spectrometry                                                                      | (B)     | lectin arrays             | (C)        | ) glycan arrays            |  |  |  |  |
| (D)                                                        | antibody arrays                                                                        | (E)     | glycoconjugate analy      | ysis       |                            |  |  |  |  |
| 70 Three o                                                 | of the ten reactions in glyco                                                          | lycic   | are not reversible. The   | ev are the | e reactions catalyzed by   |  |  |  |  |
| 70. Timee c                                                | of the ten reactions in gryco                                                          | 1 y 313 | are not reversible. The   | by are the | reactions catalyzed by     |  |  |  |  |
| (1) hex                                                    | okinase ② phosphofruc                                                                  | tokina  | ase ③ glyceraldehy        | de-3-nho   | sphate dehydrogenase       |  |  |  |  |
| _                                                          | osphoglycerate kinase 5                                                                |         |                           | ac s pho   | spinate using an eigenase  |  |  |  |  |
| ⊕ Pine                                                     |                                                                                        | P)      |                           |            |                            |  |  |  |  |
| (A)                                                        | 124                                                                                    | (B)     | 235                       | (C)        | 134                        |  |  |  |  |
| (D)                                                        | 125                                                                                    | (E)     | 245                       |            |                            |  |  |  |  |
| 71. Put the                                                | following steps concerning                                                             | g fatty | acid synthesis in the     | appropri   | ate order.                 |  |  |  |  |
|                                                            | densation ② release of a                                                               | -       |                           |            |                            |  |  |  |  |
| _                                                          | uction of a carbonyl group                                                             |         | -                         |            |                            |  |  |  |  |
| (A)                                                        | 51432                                                                                  | (B)     | 45312                     | (C)        | 15342                      |  |  |  |  |
| (D)                                                        | 54312                                                                                  | (E)     | 53412                     | ` '        |                            |  |  |  |  |

72. Which is the citric acid cycle enzyme that can transfer electrons from its bound FADH2 through

a series of iron-sulfur centers to coenzyme Q?

(A) isocitrate dehydrogenase

| (B)        | malate dehydro                                                  | gena  | ase           |           |                |          |                |            |           |  |
|------------|-----------------------------------------------------------------|-------|---------------|-----------|----------------|----------|----------------|------------|-----------|--|
| (C)        | succinate dehydrogenase                                         |       |               |           |                |          |                |            |           |  |
| (D)        | α-ketoglutarate dehydrogenase complex                           |       |               |           |                |          |                |            |           |  |
| (E)        | succinyl-CoA s                                                  | ynth  | netase        |           |                |          |                |            |           |  |
| 1          |                                                                 |       |               |           |                |          |                |            |           |  |
|            | of the following                                                |       |               |           | . 1            |          |                |            |           |  |
| _          | romboxanes and                                                  |       |               | eicosa    | noids.         |          |                |            |           |  |
| _          | ostaglandins are r                                              |       |               | 1 1 4     | •              |          |                |            |           |  |
| -          | pirin inhibits the                                              |       | -             |           |                |          | 4::4           |            |           |  |
|            | staglandin endop                                                | -     | -             |           |                |          | _              | 4:         | - ~       |  |
| (5) Let    | akotrienes are de                                               | rive  | a from Thro   | mboxa     | nes via iipox  | ygenas   | se-mediated r  | eaction    | 1S.       |  |
| (A)        | 12 (1                                                           | B)    | 13            | (C)       | 14             | (D)      | 235            | (E)        | 345       |  |
| 54 TYN : 1 | 0.1 0.11                                                        |       |               |           | 0 11           |          |                | <b>T</b> 0 |           |  |
|            | of the following                                                |       |               |           |                |          | sms 1s FALS    | E?         |           |  |
| (A)        | De novo fatty a                                                 |       | -             |           |                |          |                |            |           |  |
| (B)        | The synthesis of                                                |       |               |           |                |          |                |            |           |  |
|            | (C) Ketone body formation occurs predominantly in mitochondria. |       |               |           |                |          |                |            |           |  |
| (D)        | Acetyl-CoA for                                                  |       | =             |           | -              |          | -              | _          | •         |  |
| (E)        | For storing trig                                                | lyce  | ride, the pre | edomina   | ant fatty acyl | group    | is oleic acid. |            |           |  |
| 75. Which  | of the following                                                | con   | ditions favo  | ors the i | ncrease of ke  | etone b  | ody synthesis  | s?         |           |  |
| (A)        | increasing of gl                                                |       |               |           |                |          | <i>J J</i>     |            |           |  |
| (B)        | increasing glyc                                                 | -     | -             |           |                |          |                |            |           |  |
| (C)        | increasing gluc                                                 |       |               |           |                |          |                |            |           |  |
| (D)        | increasing fatty                                                |       |               |           |                |          |                |            |           |  |
| (E)        | increasing of li                                                |       |               |           |                |          |                |            |           |  |
| . ,        |                                                                 |       | -             |           |                |          |                |            |           |  |
| 76. Which  | of the following                                                | s are | e TRUE reg    | arding    | the complete   | e oxida  | tion of one m  | ole of     | palmitate |  |
| ` /        | via the β-oxidation                                             | -     | •             |           |                |          |                |            |           |  |
| _          | noles of NADH a                                                 |       |               |           |                |          |                |            |           |  |
| _          | e initial substrate                                             |       | -             | -         | •              |          |                |            |           |  |
| _          | DH transfers ele                                                |       |               | •         | •              | _        | •              |            |           |  |
|            | etyl-CoA enters t                                               |       | _             |           |                |          |                |            |           |  |
| (5) Ox     | idation of acetyl-                                              | -CoA  | A produced    | from or   | ne mole of pa  | almitate | e yields 106 ı | noles o    | of ATP.   |  |
| (A)        | 123 (1                                                          | B)    | 134           | (C)       | 145            | (D)      | 234            | (E)        | 345       |  |

| 77. Which                                                                        | statement for                                                                                             | gluco                                   | neogenesis                                                | from py                              | ruvate to glu  | ucose is  | FALSE?       |            |              |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------|--------------------------------------|----------------|-----------|--------------|------------|--------------|
| (A)                                                                              | Oxaloacetate                                                                                              | is one                                  | e of the inte                                             | rmediat                              | es.            |           |              |            |              |
| (B)                                                                              | TPP is a cofa                                                                                             | ctor to                                 | o catalyze c                                              | arboxyl                              | ation of pyr   | uvate.    |              |            |              |
| (C)                                                                              | The carboxy                                                                                               | lation                                  | of pyruvate                                               | require                              | s energy pro   | ovided b  | y ATP.       |            |              |
| (D)                                                                              | GTP is requir                                                                                             | red to                                  | convert the                                               | interme                              | ediate to pho  | sphoen    | olpyruvate   |            |              |
| (E)                                                                              | The intermed                                                                                              | liate fo                                | ormed in m                                                | itochono                             | dria can eith  | er be co  | onverted to  |            |              |
|                                                                                  | phosphoenol                                                                                               | pyruva                                  | ate or malat                                              | te to lear                           | ve mitochon    | idria.    |              |            |              |
| 78. Transpo                                                                      | ort of fatty aci                                                                                          | ds fro                                  | m the cytop                                               | lasm to                              | the mitocho    | ondrial 1 | natrix requ  | ires       | <u>_</u> .   |
| (A)                                                                              | ATP, carnitin                                                                                             | e, and                                  | acetyl-Co                                                 | A carbox                             | xylase         |           |              |            |              |
| (B)                                                                              | carnitine, coe                                                                                            | enzym                                   | e A, and ac                                               | etyl-Co.                             | A              |           |              |            |              |
| (C)                                                                              | ATP, carnitin                                                                                             | e, and                                  | coenzyme                                                  | A 1 7                                |                |           |              |            |              |
| (D)                                                                              | carnitine, coe                                                                                            | enzym                                   | e A, and ma                                               | anolyl-C                             | CoA            |           |              |            |              |
| (E)                                                                              | ATP, carnitin                                                                                             | e, and                                  | acetyl-CoA                                                | 4 ////                               |                |           |              |            |              |
| <ol> <li>a de</li> <li>a de</li> <li>a de</li> <li>inal</li> <li>urin</li> </ol> | man genetic defect in phenyle<br>efect in homogoric<br>bility to converte containing of<br>iciency of phe | lalanir<br>gentisa<br>ert phe<br>excess | ne hydroxyl<br>nte dioxygen<br>nylalanine<br>nive phenylp | ase<br>nase<br>to tyrosi<br>oyruvate | ne             |           | _•           |            |              |
| (A)                                                                              | 123                                                                                                       | (B)                                     | 134                                                       | (C)                                  | 125            | (D)       | 234          | (E)        | 135          |
| 80. Which                                                                        | statement for                                                                                             | DNA                                     | supercoiling                                              | g is FAI                             | LSE?           |           |              |            |              |
| (A)                                                                              | In prokaryote                                                                                             | es, cla                                 | ss I topoiso                                              | merases                              | cut the pho    | sphodie   | ester backbo | one of or  | ne strand of |
|                                                                                  | DNA, pass th                                                                                              | ne othe                                 | er end throu                                              | ıgh, and                             | then reseal    | the bac   | kbone.       |            |              |
| (B)                                                                              | Class II topo                                                                                             | isome                                   | rases cut bo                                              | th stran                             | ds of DNA,     | pass so   | me of the r  | remaining  | g DNA        |
|                                                                                  | helix between                                                                                             | n the c                                 | cut ends, an                                              | d then r                             | eseal.         |           |              |            |              |
| (C)                                                                              | (C) DNA helicase is a bacterial topoisomerase that introduces negative supercoils into DNA.               |                                         |                                                           |                                      |                |           |              |            |              |
| (D)                                                                              | In eukaryotes                                                                                             | s, DN                                   | A forms a c                                               | omplex                               | called chror   | natin th  | at mainly o  | contains l | nistones.    |
| (E)                                                                              | A relaxed DN                                                                                              | NA car                                  | n be conver                                               | ted eithe                            | er to positive | e supero  | coil or nega | tive supe  | ercoil.      |
| ① Sou                                                                            | of the following of the following therm blotting ctrophoresis m                                           | (2) F                                   | Footprinting                                              | 3 Ag                                 | garose electr  | ophores   | sis          |            |              |
| (A)                                                                              | 12                                                                                                        | (B)                                     | 23                                                        | (C)                                  | 34             | (D)       | 24           | (E)        | 25           |

| 82. Uracil- | DNA N-glycosylase is involved                                      | in which of the   | following DNA repair mechanisms?           |  |  |  |  |  |
|-------------|--------------------------------------------------------------------|-------------------|--------------------------------------------|--|--|--|--|--|
| (A)         | base-excision repair                                               | (B)               | nucleotide excision repair                 |  |  |  |  |  |
| (C)         | direct repair                                                      | (D)               | mismatch repair                            |  |  |  |  |  |
| (E)         | double-strand break repair                                         |                   |                                            |  |  |  |  |  |
| 83. Chrom   | atin immunoprecipitation can be                                    | used to isolate   | DNA fragments containing a DNA-            |  |  |  |  |  |
| binding     | g protein of interest. If you wish                                 | to know the feat  | ture of the DNA fragment in the mixture,   |  |  |  |  |  |
|             | •                                                                  |                   | ne DNA fragment being unknown)             |  |  |  |  |  |
| (A)         | polymerase chain reaction                                          |                   |                                            |  |  |  |  |  |
| (C)         | Edman degradation                                                  | (D)               | tandem mass spectrometry                   |  |  |  |  |  |
| (E)         | Southern blot                                                      |                   | 1 7                                        |  |  |  |  |  |
| 84. Which   | of the following statements cond                                   | eerning Shine-D   | algarno sequence is TRUE?                  |  |  |  |  |  |
| (A)         | It plays as restriction enzyme s                                   |                   |                                            |  |  |  |  |  |
| (B)         | It is a polyadenylation signal.                                    | 1                 |                                            |  |  |  |  |  |
| (C)         | It is a sequence in upstream of                                    | the start codon i | n prokarvotic systems.                     |  |  |  |  |  |
| (D)         | It regulates DNA replication in                                    |                   |                                            |  |  |  |  |  |
| (E)         | It interacts with ion transporter.                                 |                   |                                            |  |  |  |  |  |
| (2)         | To incorde to writing for transporters                             |                   |                                            |  |  |  |  |  |
| 85. Which   | metabolic effect is associated with                                | ith AMP-activat   | ed protein kinase (AMPK)?                  |  |  |  |  |  |
| (A)         | When activated, AMPK stimulates insulin release from the pancreas. |                   |                                            |  |  |  |  |  |
| (B)         | When activated, AMPK activates fructose 2,6-bisphosphatase.        |                   |                                            |  |  |  |  |  |
| (C)         | When activated, AMPK phosph                                        | norylates glycog  | en synthase, inhibiting glycogen           |  |  |  |  |  |
|             | synthesis during periods of met                                    | tabolic stress.   |                                            |  |  |  |  |  |
| (D)         | When activated, AMPK activat                                       | es fatty acid syn | thase 1, stimulating fatty acid synthesis. |  |  |  |  |  |
| (E)         | None of the answers is correct.                                    |                   |                                            |  |  |  |  |  |
| 86. Which   | statement about the transcription                                  | ı in eukaryotes i | s TRUE?                                    |  |  |  |  |  |
| (A)         | Protein synthesis can begin wh                                     | ile DNA replica   | tion is still proceeding.                  |  |  |  |  |  |
| (B)         | Transcription occurs in the nucleus.                               |                   |                                            |  |  |  |  |  |
| (C)         | Capping and splicing reactions proceed in the cytoplasm.           |                   |                                            |  |  |  |  |  |
| (D)         | The mature mRNA contains both introns and exons.                   |                   |                                            |  |  |  |  |  |
| (E)         | A poly-A tail is attached to the                                   | RNA transcript    | after it is transported to the cytoplasm.  |  |  |  |  |  |
| 87. Which   | of the followings participate in t                                 | ranslation?       |                                            |  |  |  |  |  |
|             | TP ② ribosome ③ primer                                             |                   | mRNA 6 promoter 7 rRNA                     |  |  |  |  |  |
|             |                                                                    |                   |                                            |  |  |  |  |  |
| (A)         | ①②④⑥ (B)                                                           | 2457              | (C) 378W                                   |  |  |  |  |  |
| (D)         | (E)                                                                | (3)(4)(7)(8)      |                                            |  |  |  |  |  |

#### 88. Which statement for prokaryotic protein synthesis is **FALSE**?

- (A) Protein synthesis begins at an AUG codon on the mRNA.
- (B) The initial complex contains two main ribosomal subunits, the mRNA, GTP, and three initiation factors.
- (C) The fMet-tRNA<sup>fMet</sup> binds to the P-site of the ribosome.
- (D) After a chain elongation, the ribosome moves one codon, leaving a peptidyl-tRNA in the P-site and a new aminoacyl-tRNA entering the A site.
- (E) When the ribosome encounters a stop codon, the chain is terminated in a process requiring GTP and three protein release factors.

#### 89. Which of the following statements is **FALSE**?

- (A) Estrogen-estrogen receptor complex activates estrogen-responsive gene.
- (B) Estrogen receptor has the "Zinc finger" structural motif.
- (C) Tamoxifen binds to estrogen receptors but does not activate estrogen-responsive genes.
- (D) Estrogen binds to "Zinc finger" motif of estrogen receptors.
- (E) Estrogen binds to estrogen receptor in the cytoplasm, and the estrogen-estrogen receptor complex translocates into the nucleus.

#### 90. Which of the following statements are TRUE about the effect of insulin?

- ① Increased uptake of glucose in adipose and muscle tissue
- (2) Activation of glycolysis in the liver
- ③ Inhibition of synthesis of fatty acids and TG in liver and adipose tissue
- 4 Increased gluconeogenesis in the liver
- (5) Increased glycogen synthesis in the liver and muscle
- (A) (1)(3)(4)
- (B) 145
- (C) 125
- (D) (2)(3)(4)
- (E) (2)(4)(5)

# 【版權所有,翻印必究】

後醫-普通生物及生化概論

| 題號 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 答案 | D  | Α  | С  | D  | В  | В  | D  | С  | Α  | В  | Е  | В  | С  | В  | С  | A  | D  | Е  | В  | A  |
| 題號 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 答案 | Е  | D  | Α  | В  | С  | D  | A  | A  | Е  | В  | A  | D  | Е  | Α  | С  | Е  | A  | D  | В  | Α  |
| 題號 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 答案 | C  | Е  | D  | Е  | В  | C  | C  | В  | Α  | В  | D  | С  | D  | Α  | Е  | С  | В  | D  | A  | Е  |
| 題號 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 答案 | Е  | D  | С  | Е  | A  | C  | Е  | В  | Α  | D  | A  | С  | С  | В  | Е  | D  | В  | С  | В  | C  |
| 題號 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |    |    |    |    |    |    |    |    |    |    |
| 答案 | D  | A  | В  | C  | C  | В  | В  | В  | D  | C  |    |    |    |    |    |    |    |    |    |    |





【 版權所有,翻印必究 】

### 高雄醫學大學 113 學年度學士後醫學系招生考試試題參考答案疑義釋疑公告

| 科目    | 題號 | 釋疑答覆                                                                                                                                                          | 釋疑結果             |  |  |  |  |
|-------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
|       | 4  | 題目已明確指出最佳答案,TCA cycle 產出 NADH 為最多因此<br>為最適合答案。且 FAD 還原態為 FADH2。                                                                                               |                  |  |  |  |  |
|       | 14 | 裸子植物 Sieve cell 與被子植物 sieve tube 差異甚多。                                                                                                                        | 維持原答案            |  |  |  |  |
|       | 35 | 真菌不只有 asexually 一種選項方式。                                                                                                                                       | 維持原答案            |  |  |  |  |
|       | 36 | 登革熱需要病媒蚊叮咬行為才能傳播,非直接接觸傳播。 約                                                                                                                                   |                  |  |  |  |  |
|       | 37 | 教科書該章節已有表格明確顯示各種植物賀爾蒙與種子發芽相關。研究期刊並非定論。                                                                                                                        | 維持原答案            |  |  |  |  |
| 普通生物學 | 39 | 在有 glucose 存在的情況下會優先利用 glucose,並避免 lactose 代謝                                                                                                                 | 答案為(B)<br>或(C)均可 |  |  |  |  |
| ,     | 49 | Chemiosmosis (化學滲透)已可由 cyclic phosphorylation<br>形成,與 NADP⁺不必然相等 。                                                                                            | 維持原答案            |  |  |  |  |
|       | 54 | B lymphocyte 為抗原呈現細胞,也同時具 MHC I 與 MHC II                                                                                                                      | 答案為(A)<br>或(C)均可 |  |  |  |  |
|       | 55 | 本題目選項誤植                                                                                                                                                       | 無正確答案 送分         |  |  |  |  |
|       | 56 | 題目主要問哪個 hormone 刺激 adrenal gland 使其促進 glucose synthesis ,因為刺激 adrenal gland 的激素為 ACTH (adrenocorticotropic hormone) ,所以答案更正為 E (adrenocorticotropic hormone)。 | 答案更正為            |  |  |  |  |
|       | 58 | 因 Cholecystokinin (CCK)有抑制食慾的功能,並由十二指腸(duodenum)中釋放                                                                                                           | 答案為(D)<br>或(E)均可 |  |  |  |  |

高雄醫學大學 113 學年度學士後醫學系招生考試試題參考答案疑義釋疑公告

| 科目   | 題號 | 釋疑答覆                                                                                                                                                                                                                                         | 釋疑結果         |  |  |  |  |
|------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
|      | 28 | (E) Methotrexate 可以同時抑制de novo synthesis of both purine and pyrimidine。但是 Methotrexate作為dihydrofolate reductase 的抑制劑,乃透過抑制salvage pathway。因此答案仍維持(A)                                                                                         |              |  |  |  |  |
|      | 30 | (C) VLDL亦含ApoB-100。因此原答案(B)與(C)均正確。 (A)                                                                                                                                                                                                      |              |  |  |  |  |
|      | 66 | (E) Protons are pumped from the inside to the outside of both mitochondria and chloroplast membranes. 此敘述亦不盡正確。                                                                                                                              |              |  |  |  |  |
|      | 69 | 雖然lectin與glycan有binding關係,但若想解析unknown glycan<br>之組成,仍然依賴Mass spectrometry。因此維持原答案。                                                                                                                                                          |              |  |  |  |  |
|      | 71 | Before the condensation reactions that build up the fatty acid chain can begin, the acetyl group of acetyl-CoA is transferred to ACP in a reaction, so called formation of a carbonyl group. 所以維持原答案。                                        |              |  |  |  |  |
| 生化概論 | 75 | (C) Increased gluconeogenesis consumes most of available oxaloacetate, but does not indicate the increase of ketone bodies in liver. (E) breakdown of fat produce large amount of acetyl CoA, which is used to produce ketone body. 所以維持原答案。 | 維持原答案<br>(E) |  |  |  |  |
|      | 76 | 選項⑤,在問 Palmitate 經過 beta-oxidation 後,1 Acetyl<br>CoA(非 Palmitate)產生多少 ATP? 因此維持原答案。                                                                                                                                                          | 維持原答案<br>(D) |  |  |  |  |
|      | 79 | PKU 乃因為 defect in phenylalanine hydroxylase 所造成phenylalanine 無法轉換為 tyrosine,才使得 phenylpyruvate 出現在尿中。以上現象稱為 PKU 並無誤,因此維持原答案。                                                                                                                 | 維持原答案<br>(B) |  |  |  |  |
|      | 81 | Co-immunoprecipitation 主要是研究 protein-protein interaction Chromatin immunoprecipitation 才是可以決定 DNA-protein interaction 的技術。因此維持原答案(D)。                                                                                                        | 維持原答案<br>(D) |  |  |  |  |
|      | 88 | (E) 進行 Protein chain termination 需要利用 3 種 protein release factors,此處並未強調 3 種同時參與。因此維持原答案(B)。                                                                                                                                                 | 維持原答案<br>(B) |  |  |  |  |
|      | 89 | (E) Estrogen binds to Estrogen Receptor in cytoplasm and translocate to the nucleus, where it binds to its hormone response element (HRE). 因此維持原答案。See Lehninger Principle of Biochemistry 8 <sup>th</sup> ed. Fig. 28-34a, pp. 3731         | 維持原答案<br>(D) |  |  |  |  |

## 普通生物

張劍鴻(張芸潔)老師提供

## 高雄醫學大學 113 學年度 學士後醫學系 生物試題命題範疇分析

- ◆ 本年度高醫後醫的普通生物試題配分如下:
  - (1) 第 1-15題, 每題 1 分, 共15分。
  - (2) 第31-60題, 每題 2 分, 共60分。
- ◆ 45 題的試題中,高達 38 題為生物學課本 Campbell 的所闡述的基礎生物概念,其中更有 6 題為題庫考題或曾出現過的考古題;
  - ◆另外,有 5 題亦為生物學課本 Campbell 的生物領域概念;
  - ◆僅第40題考 Kranz anatomy of C4 plants、和第51題 non-GMOs food: purple sweet potatoes為超出範圍題型。
- ◆ 若能循正規的方式準備,確實熟悉Campbell生物學之概念,該75分要有60以上的表現並不困難。

### 生物各試題命題範疇分析

|   |               | 第1-15題,一分題                                                                                                                                                                                          |
|---|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Unit 7 植物學    | Photosystem,完全命中:The light-harvesting complexes act as an antenna<br>正課講義:Chap 29 植物訊號和行為, page 120<br>複習課程:Unit 7 Plant Biology, page 26                                                           |
| 2 | Unit 6 微生物免疫學 | Protists,完全命中: sexual shuffling of genes occurs during conjugation, when two individuals exchange haploid micronuclei 正課講義: Chap 27 微生物, page 199 複習課程: Unit 6 Microbiology and Immunology, page 29 |

|   |               | 第1-15題,一分題                                                                                                                                                                                                                  |
|---|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Unit 2 動物生理學  | Excretory systems,完全命中:溫古知新#156;<br>Malpighian tubules that remove nitrogenous wastes<br>and also function in osmoregulation<br>正課講義: Chap 12 排泄系統, page 49<br>複習課程: Unit 2 Animal Physiology, page 44                      |
| 4 | Unit 3 生物化學   | Cellular respiration,完全命中:温古知新#155; The electron transport chain accepts electrons from the breakdown products of the first two stages (most often via NADH). 正課講義: Chap 16 細胞呼吸, page 7 複習課程: Unit 3 Biochemistry, page 11 |
| 5 | Unit 8 演化學    | Hardy-Weinberg equation,完全命中: five conditions for nonevolving populations<br>正課講義: Chaρ33 演化機制, ρage 53<br>複習課程: Unit 8 Evolution, ρage 17-18                                                                               |
| 6 | Unit 7 植物學    | Human welfare depends on seed plants,完全命中: Six crops (wheat, rice, maize, potatoes, cassava, and sweet potatoes) yield 80% of the calories consumed by humans. 正課講義:Chap30 植物多樣性, page 54                                   |
| 7 | Unit 7 植物學    | Plant Structure,完全命中:溫古知新#140;<br>Lateral roots may sprout from the outermost layer<br>of the vascular cylinder, the pericycle.<br>正課講義: Chap 28 植物構造和生長, page 38<br>複習課程: Unit 7 Plant Biology, page 9                     |
| 8 | Unit 6 微生物免疫學 | Protists,完全命中: Dinoflagellate blooms- cause<br>"red tides" in coastal<br>正課講義: Chap27 微生物, page 198<br>複習課程: Unit 6 Microbiology and Immunology, page 28                                                                    |

|    |               | 第1-15題,一分題                                                                                                                                                                                                                            |
|----|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | Unit 6 微生物免疫學 | Adaptive immunity- bacteria and archaea, CRISPR-Cas9,完全命中: CRISPR locus- a family of DNA sequences found within prokaryotic genomes 正課講義: Chap27 微生物, page 97 複習課程: Unit 6 Microbiology and Immunology, page 11                       |
| 10 | Unit 4 分子生物學  | DNA was the genetic material,完全命中: Alfred Hershey and Martha Chase showed that DNA was the genetic material of the phage T2 正課講義: Chap 21 核苷酸與遺傳, page 6; 112義守後中#40,104高醫後醫,101中國內轉,溫古知新#114 複習課程: Unit 4 Molecular Biology, page 19 |
| 11 | Unit 2 動物生理學  | Amino acid neurotransmitters,完全命中:GABA- the most major inhibitory neurotransmitter in the brain 正課講義:Chap 5 神經元和交觸, page 65 複習課程:Unit 2 Animal Physiology, page 8                                                                     |
| 12 | Unit 1 細胞生物學  | Signal transduction,完全命中:second messenger-cAMP, calcium, DAG and IP3<br>正課講義:Chap 3 細胞訊號傳遞, page 38-39<br>複習課程:Unit 1 Cell Biology, page 11                                                                                           |
| 13 | Unit 7 植物學    | The Diversity of Plants,完全命中:seedless vascular plants and "naked" seeds piants 正課講義:Chap 30 植物多樣性, page 22 and 62 複習課程:Unit 7 Plant Biology, page 30                                                                                  |
| 14 | Unit 7 植物學    | The Diversity of Plants,完全命中:The reproductive adaptations of angiosperms 正課講義:Chap 30 植物多樣性, page 70 複習課程:Unit 7 Plant Biology, page 35-37                                                                                            |
| 15 | Unit 4 分子生物學  | Mendelian genetics,完全命中:Law of segregation<br>正課講義:Chap 19 孟德爾, page 7-8<br>複習課程:Unit 4 Molecular Biology, page 9                                                                                                                     |

|    |               | 第31-60題,二分題                                                                                                                                                                                                             |
|----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31 | Unit 8 演化學    | Adaptive Radiations,命中:occur when organisms colonize new environments with little competition 正課講義:Chap34 物種起源, page 112-113                                                                                            |
| 32 | Unit 7 植物學    | The life cycle of plants,完全命中:Four key traits distinguish land plants<br>正課講義:Chap 30 植物多樣性, page 15<br>複習課程:Unit 7 Plant Biology, page 30                                                                              |
| 33 | Unit 3 生物化學   | Macromolecules,命中:Carbohydrates<br>正課講義:Chap 15 生物巨分子, page 13-20<br>複習課程:Unit 3 Biochemistry, page 3                                                                                                                   |
| 34 | Unit 1 細胞生物學  | Primary active transport,完全命中:Sodium-potassium pump- the major electrogenic pump in animals, pumps two K+ inside for every three Na+that it moves out 正課講義:Chap 2 細胞膜, page 35-36 複習課程:Unit 4 Molecular Biology, page 9 |
| 35 | Unit 8 演化學    | Fungi,命中: Fungi are heterotrophs that feed by absorption<br>正課講義: Chap 31 真菌, page 4-10<br>複習課程: Unit 8 Evolution, page 3                                                                                               |
| 36 | Unit 6 微生物免疫學 | Viral diseases,完全命中:insect borne- Dengue virus;112清華後醫#13已出現過 正課講義:Chap27 微生物, page 129                                                                                                                                 |
| 37 | Unit 7 植物學    | Plant hormones,完全命中: plant hormones control plant growth and development by affecting the division, elongation, and differentiation of cells 正課講義: Chap 29 植物訊號和行為, page 7-15 複習課程: Unit 7 Plant Biology, page 16-19    |

|    |               | 第31-60題,二分題                                                                                                                                                                                                             |
|----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38 | Unit 8 演化學    | Phylum Cnidaria,完全命中: Nematocysts are specialized organelles within cnidocytes that eject a stinging thread.<br>正課講義: Chap32 動物多樣性, page 31 複習課程: Unit 8 Evolution, page 8                                              |
| 39 | Unit 4 分子生物學  | Operon model,完全命中:The <i>lac</i> operon is under dual control: negative control by the <i>lac</i> repressor and positive control by CAP. 正課講義:Chap 23 基因表現控制, page 8-12 複習課程:Unit 4 Molecular Biology, page 34          |
| 40 | Unit 7 植物學    | Kranz anatomy is a specialized structure in C4 Plants where the mesophyll cells are clustered around the bundle-sheath cells in a ring-like fashion 正課講義: Chap 29 植物訊號和行為, page 128 複習課程: Unit 7 Plant Biology, page 29 |
| 41 | Unit 1 細胞生物學  | Prokaryotic- Bacteria and Archaea,完全命中:the DNA is concentrated in the nucleoid, without a membrane separating it from the rest of the cell. 正課講義:Chap 1 細胞構造和功能, page 10 複習課程:Unit 1 Cell Biology, page 3               |
| 42 | Unit 9 生態學    | Biodiversity,命中: Preserving biodiversity hot spots<br>正課講義: Chap38 生態系, page 71<br>複習課程: Unit 9 Ecosystems, page 12                                                                                                     |
| 43 | Unit 6 微生物免疫學 | Protists,完全命中: Protists are the most<br>nutritionally diverse of all eukaryotes<br>正課講義: Chap27 微生物, page 190<br>複習課程: Unit 6 Microbiology and Immunology, page 26                                                      |
| 44 | Unit 1 細胞生物學  | Peroxisome,命中: Microbodies contain enzymes for the breakdown of fats, alcohols and amino acids. 正課講義: Chap 1 細胞構造和功能, page 33                                                                                           |

|    |              | 第31-60題,二分題                                                                                                                                                                                                                                                          |
|----|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45 | Unit 9 生態學   | Community interactions,完全命中:Resource partitioning is differentiation of ecological niches, enabling similar species to coexist in a community. 正課講義: Chap37 多樣性和群落, page 5 複習課程: Unit 9 Ecosystems, page 7                                                           |
| 46 | Unit 2 動物生理學 | Circadian rhythm,完全命中: Circadian rhythms are daily cycles of biological activity that occur in organisms<br>正課講義: Chap 6 神經系統, page 35-36<br>複習課程: Unit 2 Animal Physiology, page 11                                                                                 |
| 47 | Unit 8 演化學   | Chordates,完全命中:Reptiles-Amniotes are tetrapods that have a terrestrially adapted egg 正課講義:Chap32 動物多樣性, page 84 複習課程:Unit 8 Evolution, page 13                                                                                                                       |
| 48 | Unit 2 動物生理學 | The inner ear contains the organs of equilibrium, 完全命中: a vestibule with two chambers: the utricle and the saccule…the utricle is oriented horizontally and the saccule is positioned vertically 正課講義: Chap 7 感覺, page 48-49 複習課程: Unit 2 Animal Physiology, page 14 |
| 49 | Unit 7 植物學   | Photosystems in the thylakoid membrane,完全命中: Linear electron flow正課講義: Chap 29 植物訊號和行為, page 120-122 複習課程: Unit 7 Plant Biology, page 26                                                                                                                             |
| 50 | Unit 2 動物生理學 | Embryonic development,完全命中:human fertilization<br>正課講義:Chap 14 動物發育, page 4-9<br>複習課程:Unit 2 Animal Physiology, page 44                                                                                                                                              |

|    |               | 第31-60題,二分題                                                                                                                                                                                                 |
|----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51 | Unit 5 生物科技   | Genetically modified organisms, non-GMOs food-<br>purple sweet potatoes<br>正課講義: Chap 24 DNA 科技, page 59-61<br>複習課程: Unit 5 Biotechnology, page 3                                                           |
| 52 | Unit 6 微生物免疫學 | Bacteria virulence,完全命中:Endotoxins are lipopolysaccharide components of the outer membrane of some gram-negative bacteria 正課講義:Chap27 微生物,page 22; 111高醫後醫 複習課程:Unit 6 Microbiology and Immunology, page 15 |
| 53 | Unit 7 植物學    | Modified roots,完全命中: pneumatophore- air roots, mangroves<br>正課講義: Chap 28 植物構造和生長, page 20<br>複習課程: Unit 7 Plant Biology, page 3                                                                            |
| 54 | Unit 6 微生物免疫學 | Antigen-presenting cells(APC),完全命中:APC(B cells, dendritic cells or macrophages) have both class I and class II MHC molecules 正課講義:Chap27 微生物, page 105-106 複習課程:Unit 6 Microbiology and Immunology, page 10 |
| 55 | Unit 6 微生物免疫學 | Prokaryotes,完全命中:The comparison of archaea and bacteria<br>正課講義:Chap27 微生物, page 42<br>複習課程:Unit 6 Microbiology and Immunology, page 18                                                                     |
| 56 | Unit 2 動物生理學  | Tropic hormones regulation,完全命中:ACTH stimulates the production and secretion of steroid hormones by the adrenal cortex. 正課講義:Chap 12 排泄系統, page 49; 温古知新#214 複習課程:Unit 2 Animal Physiology, page 33         |

|    |              | 第31-60題,二分題                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 57 | Unit 2 動物生理學 | Posterior pituitary is an extension of the hypothalamus,完全命中: Neurosecretory cells of the hypothalamus synthesize two hormones: oxytocin and ADH. These hormones travel along the long axons of neurosecretory cells to the posterior pituitary, where they are stored and released in response to nerve impulses transmitted by the hypothalamus. 正課講義: Chap 10 內分沙, page 42-43 複習課程: Unit 2 Animal Physiology, page 33; 温古知新#47 |
| 58 | Unit 2 動物生理學 | Appetite control,完全命中:CCK- secreted by enteroendocrine cells in the duodenum, acts as a hunger suppressant. Peptide YY(PYY)-released by cells in the ileum and colon, response to feeding;acts to reduce appetite 正課講義:Chap11 消化系統,page 98-100 複習課程:Unit 2 Animal Physiology, page 40                                                                                                                                             |
| 59 | Unit 8 演化學   | Fungi as Parasites,完全命中:The general term for a fungal infection in animals is mycosis.  Athlete's foot are examples of human mycoses. 正課講義:Chap 31 真菌, page 35 複習課程:Unit 8 Evolution, page 6                                                                                                                                                                                                                                      |
| 60 | Unit 8 演化學   | Tree of Life,完全命中: Phylogenetic tree-<br>evolutionary relationships<br>正課講義: Chap34 物種起源, page 6<br>複習課程: Unit 8 Evolution, page 19                                                                                                                                                                                                                                                                                               |

## 生化概論 莊老師(施政安)老師提供

### A.113 年度高醫後西醫試題命中分析

| 題號        | 講義                                  | 總復習       | 實戰解析         |
|-----------|-------------------------------------|-----------|--------------|
| 16        | 4-59 (Complex I )                   | p.8       | T3-15        |
| 17        | 2-7 (ion exchanger)                 |           | -            |
| 18        | 1-319 (95年試題)                       | -         | -            |
| 19        | 1-159 (PrPsc)                       | _         | -            |
| 20        | 1-150 (farnesylation at Cys)        | -         | T1-24        |
| 21        | 1-233, 6-211 (nuclear receptor)     | -         | -            |
| 22        | 2-152 (uncompetitive inhibition)    | p.20      | -            |
| <u>23</u> | 6-5 (replication)                   | -         | -            |
| 24        | 3-25 (cohesin)                      |           | -            |
| 25        | 6-38 (DNA Pol I)                    | p.39      | -            |
| 26        | 3-76 (carbohydrate)                 | -         | -            |
| 27        | 3-232 (G6Pase)                      | -         | -            |
| 28        | 4-164 (HAT medium)                  | p.35      | -            |
| 29        | 4-249~253 (cholesterol合成)           | -         | T1-23        |
| 30        | 4-258 (lipoprotein and Apo protein) | -         | -            |
| 61        | 2-51 (protein sequencing)           | - · · · · | -            |
| 62        | 6-211 (DNA-binding motif)           | 数FIJ/X    | <b>狂</b> - 】 |
| 63        | 2-119 (Hb and Mb)                   | W1171-70. | / U _ 1      |
| 64        | 2-165 (allosterism)                 | -         | -            |
| 65        | 3-242 (PPP)                         | -         | -            |
| 66        | none                                | -         | -            |
| 67        | 3-6 (base)                          | -         | -            |
| 68        | 3-216 (glycolysis)                  | -         | -            |
| 69        | 3-84 (carbohydrate)                 | -         | -            |
| 70        | 3-166 (glycolysis)                  | -         | T2-18        |

### 113 高點醫護|後西醫考後試題解析【高醫專刊】

| 題號        | 講                           | <u>義</u> | 總復習  | 實戰解析  |
|-----------|-----------------------------|----------|------|-------|
| 71        | 4-218 (fatty acid 合成)       |          | -    | -     |
| 72        | 4-23 (TCA cycle)            |          | -    | T3-11 |
| 73        | 3-135 (eicosanoid)          |          | -    | -     |
| 74        | 4-187 (desaturation site)   |          | -    | -     |
| 75        | 5-47 (ketone bodies)        |          | -    | -     |
| 76        | 4-68 ( $\beta$ -oxidation)  |          | p.30 | -     |
| 77        | 5-25 (biotin)               |          | p.22 | -     |
| 78        | 4-192 (carnitine shuttle)   |          | -    | -     |
| 79        | 4-125 (PKU)                 |          | -    | -     |
| <u>80</u> | 3-4 (topoisomerase)(爭議)     |          | -    | -     |
| 81        | 6-240 (DNA-protein interact | tion)    | p.43 | -     |
| 82        | 6-78 (BER)                  |          | p.55 | -     |
| <u>83</u> | none(爭議)                    |          | -    | -     |
| 84        | 6-179 (SD sequence)         |          | -    | -     |
| 85        | 上課筆記(AMPK)                  |          | -    | -     |
| 86        | 6-146 (transcription)       |          | -    | -     |
| 87        | 6-168 (translation)         |          | -    | -     |
| 88        | 6-171 (translation)         |          | -    | -     |
| 89        | 1-233 (zinc finger)         |          | -    | -     |
| 90        | 5-63 (insulin)              |          | 印必   | 宪】    |

(註: 符號含義: 4-39 = 第四回講義第39頁; p.25 = 總復習講義第25頁;

<u>T1-7 = 實戰解析試題Test one/第7題; T2-33 = 實戰解析試題</u>

Test two/第33題; T3-2 = 實戰解析試題Test three/第2題)

### B.113 年度高醫後西醫試題爭議題分析

- 80. (E)也是錯的: relaxed DNA 不能和 supercoilic DNA <u>自由互變</u>, 必須外力介入,例如 topoisomerase 之作用或 DNA helicase 的 向前推進才能產生 supercoilic DNA structure 故(C)(E)皆可選
- 83. 開始所得之 DNA 量通常會很少, 所以常先做 PCR, 把 DNA 量放大後, 才夠去做 DNA sequencing. 故應選(A) polymerase chain reaction



其他試題詳解,歡迎參考高點出版 67MU2023【生化概論歷屆試題詳解】一書,學士後相關書籍出版詳情,請上高點網路書店查詢。

医分

護

【版權所有,翻印必究】