113學年度 學士後醫學系招生考試

物理及化學試題封面

考試開始鈴響前,請勿翻閱本試題!

★考試開始鈴響前,請注意:

- 一、除准考證、應考文具及一般手錶外;行動電話、穿戴式裝置及其他物品 均須放在臨時置物區。
- 二、請務必確認行動電話已取出電池或關機,行動電話及手錶的鬧鈴功能必須關閉。
- 三、就座後,不可擅自離開座位或與其他考生交談。
- 四、坐定後,雙手離開桌面,確認座位號碼、答案卡號碼與准考證號碼相同,以及抽屜中、桌椅下或座位旁均無非考試必需用品。如有任何問題,請立即舉手反應。
- 五、考試開始鈴響前,不得翻閱試題本或作答。
- 六、考試全程不得吃東西、喝水及嚼食口香糖。
- 七、違反上述規定,依「筆試規則及違規處理辦法」議處。

★作答說明:

- 一、考試時間:100分鐘。
- 二、本試題(含封面)共15頁,如有缺頁或毀損,應立即舉手請監試人員補發。
- 三、本試題共90題,皆為單選題,共計150分;每題答錯倒扣,不作答不計分。
- 四、答題依題號順序劃記在答案卡上,寫在試題本上無效;答案卡限用 2B 鉛 筆劃記,若未按規定劃記,致電腦無法讀取者,考生自行負責。
- 五、試題本必須與答案十一併繳回,不得攜出試場。

Choose one best answer for the following questions

【單選題】每題1分,共計 30 分,答錯1題倒扣 0.25 分,倒扣至本大題零分為止,未作答, 不給分亦不扣分。1~15 題為物理,16~30 題為化學。

1.	A 10 g object connected to one end of a massless spring undergoes 50 oscillations in 5 seconds.
	What is the spring constant?

- (A) 5 N/m
- (B) 10 N/m
- 20 N/m
- (D) 30 N/m
- (E) 40 N/m

2. If a simple pendulum oscillates with small amplitude and its length is doubled, what happens to the frequency of its motion?

(A) It doubles.

It becomes $\sqrt{2}$ times as large.

(C) It becomes half as large.

It becomes $1/\sqrt{2}$ times as large.

(E) It remains the same.

3. A certain spring that obeys Hooke's law is stretched by an external agent. The work done in stretching the spring by 10 cm is 4 J. How much additional work is required to stretch the spring an additional 10 cm?

- (A) 2 J
- (B) 4 J
- (C) 8 J
- (D) 10 J
- (E) 12 J

4. A child plays a string of length = 20 cm connected with a ball of mass m = 1 kg, and starts to rotate it vertically. Find the minimum speed of the ball at the top that is needed to rotate it vertically in circular fashion? (Gravitational acceleration $g = 10 \text{ m/s}^2$)

- 0.7 m/s(A)
- (B) 1.4 m/s
- (C) 2.2 m/s
- (D) 3.3 m/s
- (E) 4.2 m/s

5. A grindstone increases in angular speed from 4 rad/s to 12 rad/s in 4 s. Through what angle does it turn during that time interval if the angular acceleration is constant?

- (A) 8 rad
- 12 rad
- (C) 16 rad
- (D) 32 rad
- (E) 64 rad

6. Determine the force per unit length between two infinitely long parallel conducting wires carrying currents I_1 and I_2 in opposite directions. The wires are separated by a distance d. Will the two wires be attracted to each other or repulsed?

- (A) $F = \frac{\mu_0 I_1 I_2}{2\pi d}$, attracted (B) $F = \frac{\mu_0 I_1 I_2}{2\pi d}$, repulsed (C) $F = \frac{\mu_0 I_1 I_2}{\pi d}$, attracted
- (D) $F = \frac{\mu_0 I_1 I_2}{\pi d}$, repulsed (E) F = 0

7. How many 1 μ F capacitors must be connected in parallel to store a charge of 1 C with a potential of 110 V across the capacitors?

- (A) 7.1×10^3
- (B) 8.4×10^{3}
- (C) 9.1×10^3
- (D) 10.2×10^3
- 12.4×10^3 (E)

8. Find the resonance frequency of the following LC circuit?

- (A) 0.02 Hz
- (B) 0.04 Hz
- (C) 0.06 Hz
- (D) 0.08 Hz
- (E) 0.10 Hz

9. Find the current of the following circuit.

- (A) 3.3 A
- (B) 4.4 A
- (C) 5.6 A
- (D) 6.7 A
- (E) 7.8 A
- 10. In the ⁴He atom, when the 3rd orbital electron jumps to the 1st orbit, what is the photon energy being emitted?
 - (A) 44.2 eV
- (B) 48.4 eV
- (C) 52.3 eV
- (D) 54.1 eV
- (E) 60.6 eV
- 11. An engine does 15 kJ of work while exhausting 37 kJ to a cold reservoir. What is the efficiency of the engine?
 - (A) 0.15
- (B) 0.29
- (C) 0.33
- (D) 0.45
- (E) 1.20
- 12. A gas undergoing a series of pressure and volume changes from a state (a) to state (b) by the following five paths. Which of the following paths requires the highest work for the changing?

- 13. The speed of a transverse wave on a string is 170 m/s when the string tension is 120 N. To what value must the tension be changed to raise the wave speed to 180 m/s?
 - (A) 120 N
- (B) 125 N
- (C) 130 N
- (D) 135 N
- (E) 140 N

14. Which	of the following aberrations is related to the wavelength of light?
(A)	spherical aberration (B) chromatic aberration (C) coma
(D)	astigmatism (E) distortion
Measur	al fluid flows through a horizontal pipe whose diameter varies along its length. ements would indicate that the sum of the kinetic energy per unit volume and pressure at t sections of the pipe would
(A)	decrease as the pipe diameter increases
(B)	increase as the pipe diameter increases
(C)	increase as the pipe diameter decreases
(D)	decrease as the pipe diameter decreases
(E)	remain the same as the pipe diameter changes
16. A point	in the wave function where the amplitude is zero defines
(A)	the node (B) the excited state
(C)	the amplitude of the wave function (D) the frequency of radiation
(E)	none of the above
I. Escar II. Read	eterogeneous catalyzed reaction, the reaction can be divided into four processes: e or desorption of the products. tion of the adsorbed reactants. ration of the adsorbed reactants on the surface of the catalyst.
IV. Ads	orption and activation of the reactants.
What is	the correct order of the process?
(A) (D)	$I \rightarrow II \rightarrow III \rightarrow IV$ (B) $IV \rightarrow III \rightarrow II$ (C) $I \rightarrow IV \rightarrow III \rightarrow III$ $IV \rightarrow III \rightarrow III \rightarrow II \rightarrow III \rightarrow IIII \rightarrow IIIIII$
(D)	
	d gap of the semiconductor aluminum phosphide (AlP) is 2.5 eV. What color of light is emitted diode? (1 eV = 1.6×10^{-19} J; Planck's constant: 6.626×10^{-34} J·s = 4.136×10^{-15} eV·s) red (B) orange (C) yellow (D) green (E) blue
19. Which	radiation is applied in nuclear magnetic resonance (NMR) technique?
(A)	X-ray (B) ultraviolet (C) infrared (D) visible (E) radio wave
20. Which	of the following reactions is a disproportionation reaction?
(A)	$HCl_{(aq)} + NaOH_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(l)}$
(B)	$Cl_{2(aq)} + 2I^{-}_{(aq)} \rightarrow I_{2(aq)} + 2Cl^{-}_{(aq)}$
(C)	$CaSiO_{3(s)} + 8HF_{(aq)} \rightarrow H_2SiF_{6(aq)} + CaF_{2(aq)} + 3H_2O_{(l)}$
(D)	$AgNO_{3(aq)} + NaCl_{(aq)} \rightarrow AgCl_{(aq)} + NaNO_{3(aq)}$
(E)	$Cl_{2(aq)} + 2NaOH_{(aq)} \rightarrow NaClO_{(aq)} + NaCl_{(aq)} + H_2O_{(l)}$

(A)	y the number of	of unpai (B)	_	(C)	`	1s a we (D)	eak field liga	na). (E)	5
the reaction (A) (D)	1.04^{-} ion is of ction in acidic clution contains. What is the 1.0×10^{-1} M 1.8×10^{-3} M	conditioning Fe	on as follow ²⁺ requires tration of th (B) (E)	40.00 40.8 × 1.8 × 9.1 ×	$O_4^- + Fe^{2+} - M$ of a 0.0 in the original $10^{-2} M$ $10^{-4} M$	→ For 25 M al solu	$e^{3+} + Mn^{2+}$) A KMnO4 solu	A 50.00 ution fo	mL sample or complete
	s the number	_	=	etrons i (C)			7	(E)	0
(A)	4	(B) 3	,	(C)	O	(D)	/	(E)	8
CrO ₄ ²⁻	add 0.10 M s t, the precipita 10 ⁻¹⁰ . Which silver chloric silver chrom silver nitrate It cannot be silver metal	tes are of the safe	obtained. Gi followings v	iven th	e K _{sp} for Ag ₂ ecipitate first	CrO4 i	_		
25. When	the Pd-106 nu	cleus is	struck with	an alp	oha particle, a	proto	n is produced	l along	with a new
	nt. What is this					1	1	C	
(A)	Cd-112	(B) (Cd-109	(C)	Ag-108	(D)	Ag-109	(E)	Ag-110
26. How r (σ _{2s})(σ (A)	nany unpaired $(2s^*)(\sigma_{2p})(\pi_{2p})(\sigma_{2p})$	electron π_{2p}^*)(σ_2	ns are prese (p*).	ent in t	he F ₂ ²⁺ ion? '	The or	der of the mo	olecula (E)	r orbitals is
	e holding fou							t gas. I	The balloon
contain	ning which ga	s is the l	largest ball	oon?					
(A)	H_2		(B)	He			(C) Ne		
(D)	O_2		(E)	All ba	alloons have	the san	ne volume.		
	s the simplest B, and C aton it cell? ABC	is respe			• • • • • • • • • • • • • • • • • • • •				
(11)	1110	(10)	· • • · · ·	()	1100	(\mathbf{L})	1 1010	(-)	1 1 T D C 3

29. Amon	g the following	g covalent bon	ds, which o	one has the	smallest	bond end	ergy?			
(A)	C–C	(B) C-O	(C)	C-S	(D)	C-C1	(E)	C-F		
	ermic decomp addition of I	wing changes position reactio He(g) (emperature (n as follow (B) remo	val of C5H	$C_{(g)} \leftrightarrows C_2H$ $C_{(g)} = C_2H$	$I_{4(g)} + 3C$ (C) as	•			
【單選題		共計 120 分, 下扣分。31~60					零分為止	,未作答,		
		r is generated b Gravitational ac				who clim	bs a summ	it of height		
(A)	25 W	(B) 40 W	(C)	55 W	(D)	65 W	(E)	80 W		
taking	32. A baseball flies from the ground to a roof with a height $h=3$ m and falls at a 45-degree angle, taking 3 seconds, what is the horizontal displacement of the baseball during this time? (Gravitational acceleration $g=10$ m/s ²)									
	14 m		(C)		(D)	56 m	(E)	70 m		
coeffic	cient of kinetic	zontal rope to c friction betwee ex 50 cm at a co (B) 0.50 J	en the box onstant spe	and the tal	•	5, what is				
with a and all	diameter of 0. lowing the cor	g 16 kg block i 2.5 m. The flywhold to unwind, where the following of the control of the following of the	neel's rotati hat is the a	onal inertic	a is 1.0 kg	g·m². Up lock?				
speed relativ	of v_0 . The sti e to point P is	00 g is diagona ck is suspendes 0.05 kg·m².	d at point When the as the initia	P. The robullet first l velocity of	tational i	nertia of ne stick, t let?	the stick	30° vo'.		
(A)	7 m/s	(B) 10 m/s	(C)	15 m/s	(D)	30 m/s	(E)	40 m/s		

36. A frictionless curve of radius 500 m is banked with a banking angle $\theta = 30^{\circ}$. A	ball of mass m =
10 kg and radius $r = 50$ cm is moving on it. What angular velocity is needed	
for the ball moving on the curve without need of frictional force?	
(Gravitational acceleration $g = 10 \text{ m/s}^2$) (tan $30^\circ = 0.577$)	

- (A) 53.7 rad/s
- (B) 107.4 rad/s
- (C) 214.8 rad/s

- (D) 332.2 rad/s
- (E) 429.6 rad/s
- 37. A thin rod of length 100 cm and mass 6 kg with the rotation axis through its center. The rod rotates and accelerates to an angular velocity of 100 rad/s uniformly from rest over a 10 seconds interval. Find the torque to the rod $(kg \cdot m^2/s^2)$?

- (A) 5
- (B) 10
- (C) 15
- (D) 20
- (E) 25
- 38. A gun fired vertically and hits a wooden block and stops inside. The bullet and block have a mass of 0.1 and 0.5 kg, respectively. The velocity of bullet is 100 m/s. How high will the wooden block be raised?

(Gravitational acceleration $g = 10 \text{ m/s}^2$)

- (A) 8 m
- (B) 10 m
- (C) 12 m
- (D) 14 m
- (E) 16 m
- 39. One particle of mass $M = 0.5 \times 10^{-9}$ kg and velocity $V = 4 \times 10^{5}$ m/s directly hits the other particle of mass $m = 0.1 \times 10^{-9}$ kg and velocity v = 0 m/s. Find the maximum energy transfer from one particle to the other?
 - (A) 15 J
- (B) 22 J
- (C) 29 J
- (D) 36 J
- (E) 43 J
- 40. If two springs with spring constants k and 3k respectively are connected in series and attached to an object with mass m, what is the oscillation frequency of the springs?
 - (A) $\sqrt{k/m}$

- (B) $\sqrt{3k/4m}$
- (C) $\sqrt{3k/m}/2\pi$

- (D) $\sqrt{k/m}/2\pi$
- (E) $\sqrt{3k/4m}/2\pi$
- 41. An electronics technician wishes to construct a parallel plate capacitor using rutile ($\kappa = 100$) as the dielectric. The area of the plates is 1.0 cm². What is the capacitance if the rutile thickness is 1.0 mm? (permeability constant $\mu_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$)
 - (A) 88.5 pF
- (B) 177 pF
- (C) $8.85 \mu F$
- (D) $35.4 \mu F$
- (E) $100 \,\mu\text{F}$
- 42. Two conducting wires A and B of the same length and radius are connected across the same potential difference. Conductor A has twice the resistivity of conductor B. What is the ratio of the power delivered to A to the power delivered to B?
 - (A) 2
- (B) $\sqrt{2}$
- (C) 1
- (D) $1/\sqrt{2}$
- (E) $\frac{1}{2}$

43. A heart surgeon monitors the flow rate of blood through an artery using an electromagnetic flowmeter as shown in the figure. Electrodes A and B make contact with the outer surface of the blood vessel, which has a diameter of 3.0 mm. For a magnetic field magnitude of 0.04 T, an *emf* of $160 \,\mu\text{V}$ appears between the electrodes. Calculate the speed of the blood.

(A) 1.33 m/s

(B) 2.33 m/s

(C) $_{3.66}$ m/s

(D) 4.66 m/s

(E) 6.66 m/s

44. A rectangular coil with 1000 turns has a length and width of 10 cm and 20 cm respectively and carries a counterclockwise current of 10 A. When the magnetic dipole moment makes an angle of 60° with a magnetic field of 0.5 T, what is its potential energy?

(A) -50 J

(B) -87 J

(C) -100 J

(D) 50 J

(E) 100 J

45. A rectangular conductor coil has width L = 10 cm, resistance $R = 0.3 \Omega$, and mass m = 100 g. Ignoring the air drag, when the coil falls in a uniform magnetic field B = 10 T, the final terminal velocity value of the coil is:

(Gravitational acceleration $g = 10 \text{ m/s}^2$)

(A) 0.3 m/s

(B) 0.5 m/s

(C) 0.7 m/s

(D) 3.0 m/s

(E) 5.0 m/s

46. A 5 μ F capacitor is linked to an electromotive force experiencing uniform increment at a rate of 100 V/s over time. The displacement current between the plates is:

 $(A) \quad 0$

(B) 5 A

(C) $5 \times 10^{-2} \text{ A}$

(D) $5 \times 10^{-4} \text{ A}$

(E) $5 \times 10^{-6} \text{ A}$

47. In a certain cyclotron a proton moves in a circle of radius 0.50 m. The magnitude of the magnetic field is 1.20 T. What is the oscillator frequency? (The mass of proton $m_p = 1.67 \times 10^{-27} \text{ kg}$)

(A) $1.83 \times 10^7 \text{ Hz}$

(B) $2.53 \times 10^7 \text{ Hz}$

(C) $3.62 \times 10^7 \text{ Hz}$

(D) $4.71 \times 10^7 \text{ Hz}$

(E) $5.83 \times 10^7 \text{ Hz}$

48. A gas is at 200 K. If we wish to double the root mean square speed (v_{rms}) of the molecules of the gas, to what value must we raise its temperature?

(A) 283 K

(B) 400 K

(C) 500 K

(D) 600 K

(E) 800 K

49. In the figure, a gas enclosed within a sealed chamber follows a closed path as illustrated. What is the total amount of work performed by the gas?

(A) +40 J

(B) +20 J

(C) 0 J

(D) -20 J

E) -40 J

50. When a fixed pressure of one atmosphere is maintained, an ideal gas receives 25 J of energy in the form of heat. During this process, the gas's volume expands from 20 cm³ to 40 cm³. What is the molar specific heat of this ideal gas?

(The universal gas constant $R = 8.31 \text{ J/mol} \cdot \text{K}$, 1 atm = $1.01 \times 10^5 \text{ Pa}$)

- (A) 80 J/mol·K (B) 85 J/mol·K (C) 90 J/mol·K (D) 95 J/mol·K (E) 100 J/mol · K
- 51. Two objects with temperatures T1 and T2 (T2 = 2T1) are isolated from their surroundings. A small amount of heat Q is transferred without changing their temperatures. What is the total entropy change of the two objects?
 - (A) $(1/2) \cdot (Q/T1)$
- $(3/2) \cdot (Q/T1)$ (B)
- (C) $(1/3) \cdot (Q/T2)$

- (D) $(2/3) \cdot (Q/T2)$
- (E) $(1/4) \cdot (Q/T2)$
- 52. The figure shows the configuration of a beam-expander (5x) formed by two positive lenses with focal lengthes f_1 and f_2 . The distance between two lens is 12 cm. W_i and W_f denote the input and output laser beam diameters, respectively. What is the laser focal point in the system?

- (A) 2.0 cm away from the input lens
- 4.0 cm away from the input lens (B)
- (C) 6.0 cm away from the input lens
- 8.0 cm away from the input lens (D)
- 10.0 cm away from the input lens
- 53. A police car with a 500 Hz siren is moving at 20 m/s. What is the total frequency change when the police car is approaching and then leaving the listener? (sound speed in the air is 344 m/s)
 - (A) 32 Hz
- (B) 36 Hz
- (C) 48 Hz
- (D) 52 Hz
- (E) 58 Hz
- 54. A doppler flow meter transmit ultrasound of 10 MHz to measure the blood flow. If the reflected sound of 9.9 MHz is recorded by the same probe, find the speed of the blood flow. (sound speed in the tissue is 1500 m/s)
 - (A) 5.5 m/s (B) 6.5 m/s
- (C) 7.5 m/s (D) 8.5 m/s
- 55. Thin film coating is a technique for anti-reflection. How thick a thin film with the refractive index of 1.25 should be coated on a glass surface (n=1.5) to eliminate the reflection for the wavelength of 600 nm? Only consider normal incidence.
 - (A) 120 nm
- (B) 150 nm
- 300 nm (C)
- (D) 500 nm
- (E) 600 nm
- 56. An acrylic cube with a volume of 8 cm³ registers a weight of 40 g on a spring scale calibrated in grams. If the same object is weighed while submerged in a liquid with a density of 4 g/cm³, what reading will the scale display?
 - (A) 8 g
- (B) 16 g
- (C) 24 g
- (D) 32 g
- (E) 40 g

57.	The net nuclear fusion reaction inside the Sun can be written as $4^{1}\text{H} \rightarrow {}^{4}\text{He} + E$. The rest energy
	of each hydrogen atom is 938.8 MeV, and the rest energy of the helium-4 atom is 3728.4 MeV.
	Calculate the percentage of the starting mass that is transformed to other forms of energy.

(A) 0.11 %

(B) 0.31 %

(C) 0.51 %

(D) 0.71 %

(E) 0.91 %

58. In Bohr's hydrogen theorem, find the ratio of the longest wavelength between Balmer's and Paschen's series? (Balmer/Paschen)

(A) 0.35

(B) 0.40

(C) 0.45

(D) 0.50

(E) 0.55

59. How fast is needed for an O_2 ⁺ ion to move in a circular orbit of radius 5 m in a magnetic field of 0.5 Tesla? (1 u = 1.66 × 10⁻²⁷ kg)

(A) $3.8 \times 10^5 \,\text{m/s}$

(B) $4.1 \times 10^5 \,\text{m/s}$

(C) $5.2 \times 10^5 \,\text{m/s}$

(D) $7.5 \times 10^6 \,\text{m/s}$

(E) $8.9 \times 10^6 \,\text{m/s}$

60. A spacecraft is flying towards Earth at a speed of 0.7 c. When it is 8 light-years away from Earth, it sends a message to Earth at a speed of 0.5 c (relative to the spacecraft). How long will it take for Earth to receive this message?

(A) 5 years

(B) 6 years

(C) 7 years

(D) 8 years

(E) 9 years

61. Which of the following carbon atoms exhibits an oxidation state of +3?

(A)

(B) II

(C) III

(D) IV

(E) V

62. Given the electron configuration of an element X is $[Ar]3d^{10}4s^24p^3$. What is the formula for the chloride of X most likely to be?

(A) XCl

(B) XCl₂

(C) XCl₃

(D) XCl₄

(E) XCl₆

63. How much energy is needed to convert 100 g of ice at 0°C to water at 50°C?

specific heat capacity (ice) = $2.10 \text{ J/g} \cdot {}^{\circ}\text{C}$;

specific heat capacity (water) = $4.18 \text{ J/g} \cdot {}^{\circ}\text{C}$;

heat of fusion = 333 J/g;

heat of vaporization = 2258 J/g

(A) 10.1 kJ

(B) 20.7 kJ

(C) 31.4 kJ

(D) 54.2 kJ

(E) 65.8 kJ

64. What	concentration	of glu	cose in water	r is ne	eded to produ	ce an a	aqueous	s soluti	on is	otomic with
blood?	Give the osm	notic p	ressure of blo	ood at	25°C is 7.70 a	ıtm. (R	L = 0.08	2 atm	L/mo	ol·K)
(A)	0.158 M	(B)	0.315 M	(C)	0.630 M	(D)	1.580	M	(E)	3.15 M
65. Which	of the follow	wings i	is not neces	sary fo	or protein syn	nthesis	at the	stage	of pe	ptide bonds
format	ion?									
(A)	amino acids		(B)	mRN	J A		(C)	DNA		
(D)	tRNA		(E)	ribos	omes					
66. Give th	he effusion tin	ne of 2	50 mL of me	thane t	hrough a smal	ll hole	is 48 s.	How lo	ong w	ill it require
for sar	ne volume of	helium	to pass thro	ugh th	e same hole?	(CH ₄ =	16 g/m	ol; He=	=4 g/r	nol)
(A)	12 s	(B)	24 s	(C)	48 s	(D)	96 s		(E)	192 s
67. Given	the second ha	lf-life	for a second	order	reaction is 60	secon	ds. Hov	w mucł	n time	e is required
for 87.	5% reactant to	o be co	onsumed in the	his rea	ction?					
(A)	30 seconds	(B)	60 seconds	(C)	90 seconds	(D)	120 se	econds	(E)	210 seconds
68. Which	of the follow	ing tre	nds is incor i	rect?						
(A)	atom size: L	i < Na	$< K < C_S$		(B) ior	n size:	Ca ²⁺ <	$K^+ < C$	$21^{-} < 5$	S^{2-}
(C)	electronegat	ivity: 1	I < Br < Cl <	F	(D) bo	iling p	oint: H	2O < H	[2S <]	$H_2Se < H_2Te$
(E)	bond angle:	SbF ₃ <	< AsF ₃ $<$ PF ₃	< NF ₃	3					
69. At 27°	C, an ideal g	as witl	h a mass of	0.4 g	in 100 mL ha	ıs a pr	essure	of 0.3	atm.	What is the
molec	ular weight of	this ga	as molecule?	(R = 0)	0.082 atm·L/n	nol·K))			
(A)	328	(B)	246	(C)	133	(D)	120		(E)	30
70. The ra	ate constant fo	or a re	action incre	ases fr	rom 10.0 s ⁻¹ t	to 100.	.0 s ⁻¹ v	hen th	ne ten	nperature is
increas	sed from 300	K to 40	00 K. What i	s the a	ctivation energ	gy for	this rea	ction i	n kJ/r	nol?
(R=8)	.31 J/mol·K;	ln10 =	2.30)							
(A)	45.6	(B)	23.0	(C)	18.3	(D)	12.7		(E)	5.0
71. Below	reaction was	studie	d at -10°C ar	nd the	following resu	ılts we	re obta	ined.		
2NO _(g)	$+ Cl_{2(g)} \rightarrow 21$	NOC1(g	g)							
[NO]	$\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$	Initial	Rate							
(mol/I		(mol/L								
0.10 0.10	0.10 0.20	0.1 0.3								
0.20	0.20	1.4								
Consid	dering the rate	law o	f this reaction	n, wha	t's the unit of	the rat	te const	ant?		
(A)	$(\text{mol/L})^2 \cdot \text{m}$	in ⁻¹	(B)	(mol	$(L)^1 \cdot min^{-1}$		(C)	(mol/L	$r)_0 \cdot m$	in ⁻¹
(D)	$(\text{mol/L})^{-1} \cdot \text{m}$	nin ⁻¹	(E)	(mol	$(L)^{-2} \cdot min^{-1}$					

72.	Which	of the	following	statements	is	correc	t ?
72.	Which	of the	following	statements	1S	corre	ec

- (A) Arrhenius postulated that an acid is a proton (H⁺) donor, and a base is a proton acceptor.
- (B) A buffer with a large capacity contains large volumes of the buffering components.
- (C) For the titrations of weak acids with strong bases, the greater pH value at the equivalence point is obtained when the stronger acid is used.
- (D) For a particular buffering system, all solutions that have the same ratio of [A⁻]/[HA] have the same pH value.
- (E) An acid-base indicator can be used to determine the equivalence point of an acid-base titration because of its ability to mark the half-equivalence point of a titration by changing color.

73.	At a certain temperature, placing one mole	e of am	monia į	gas into a sea	led contai	ner resu	lts in 40%
	ammonia decomposition at equilibrium.	What	is the	equilibrium	constant	Kc for	ammonia
	decomposition at that temperature? (amm	onia de	compo	sition: 2NH ₃ ($g) \rightarrow N_{2(g)}$	$+3H_{2(g)}$))

- (A) 0.043
- (B) 0.12
- (C) 0.80
- (D) 8.33
- (E) 17

74. Complete the Lewis structure for the molecular formula (C₅H₇ON) below.

This molecule has _____ single bonds, ____ multiple bonds and ____ sp² hybridized atoms.

- (A) 4, 2, 2
- (B) 4, 2, 4
- (C) 11, 2, 2
- (D) 11, 2, 4
- (E) 11, 5, 4

75. A product is electroplated by copper from CuSO₄ solution. A constant current of 9.65 amp is applied by an external power supply. How long will it take to deposit 6.35×10^2 g of Cu onto the surface of product? (Cu = 63.5 g/mol) (1F = 96485 C/mol)

- (A) 14.22 s
- (B) 8.9 min
- (C) 2.54 h
- (D) 55.5 h
- (E) 1.37 days

76. An unknown compound is cooled at 1 atm, and it freezes at 50.0 K to form Solid I. At a lower temperature, Solid I rearranges to Solid II, which has a different crystal structure. Thermal measurements show that ΔH an ΔS for the I \rightarrow II phase transition are -700.0 J/mol and -20.0 J/K mol, respectively. What is the temperature of Solids I and II in equilibrium?

- (A) 13.6 K
- (B) 19.8 K
- (C) 35.0 K
- (D) 59.8 K
- (E) 98.2 K

113 學年度學士後醫學系招生考試

物理及化學試題

77. What are the signs (+, -, or 0) of ΔH , ΔS , and ΔG for the spontaneous vaporization of a liquid to a vapor?

- (A) $(\Delta H, \Delta S, \Delta G) = (+, +, +)$
- (B) $(\Delta H, \Delta S, \Delta G) = (+, -, +)$
- (C) $(\Delta H, \Delta S, \Delta G) = (0, 0, 0)$
- (D) $(\Delta H, \Delta S, \Delta G) = (+, +, -)$
- (E) $(\Delta H, \Delta S, \Delta G) = (-, -, -)$

78. The reduction potentials for Au³⁺ and Cr³⁺ are as follows:

 $Au^{3+} + 3e^- \rightarrow Au$, $\varepsilon^{\circ} = +1.50 \text{ V}$

$$Cr^{3+} + e^- \rightarrow Cr^{2+}, \, \varepsilon^{\circ} = -0.50 \text{ V}$$

Calculate ΔG° (at 25°C) for the reaction:

 $Au^{3+} + 3Cr^{2+} \rightarrow 3Cr^{3+} + Au$

- (A) $-7.37 \times 10^2 \text{ kJ}$
- (B) $-5.79 \times 10^2 \text{ kJ}$
- (C) $-1.6 \times 10^2 \text{ kJ}$

- (D) $7.37 \times 10^2 \text{ kJ}$
- (E) $10 \times 10^2 \text{ kJ}$

79. How many different structures do SeCl4, CBr4, KrF4, CH4, and TeF4 have?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

80. A weak acid HA is dissolved in enough water to prepare an acidic solution. The pH value and osmotic pressure of resulting solution at 27°C are 6 and 0.246 atm, respectively. What is the Ka of HA? ($R = 0.082 \text{ L} \cdot \text{atm/K} \cdot \text{mol}$; assuming Van't Hoff factor = 1)

- (A) 1.00×10^{-10} (B) 2.30×10^{-10} (C) 1.10×10^{-9} (D) 6.10×10^{-9} (E)

81. The pH of a bottle of vinegar is 2.75 at 25°C. What is the mass percentage concentration (w/w) of acetic acid in this vinegar, assuming no other acid is presented?

(K_a of acetic acid: 1.8×10^{-5} ; pK_a of acetic acid: 4.74; $10^{-2.75} = 0.0018$; $10^{2.75} = 562.3$; assuming the density of vinegar = 1 g/cm³; CH₃COOH=60 g/mol)

- (A) 5.0%
- (B) 4.0%
- (C) 3.0%
- (D) 2.0%
- (E) 1.0%

82. Which of the following complexes can exhibit optical isomerism? (en = $H_2N-CH_2-CH_2-NH_2$)

- (A) cis-Co(NH₃)₄Cl₂
- (B) trans-Co(en)₂Br₂
- (C) cis-Co(en)₂Cl₂

- (D) $Co(NH_3)_3Cl_3$
- (E) none of these

83. A compound has a formula of [Pt(PPh₃)₂(NCS)₂]. How many isomers does this compound have?

- (A) 2
- (B) 3
- (C) 4
- (D) 5
- (E) 6

- 84. Aluminum (Al) metal crystallizes in a face-centered cubic structure. The relationship between the radius r of an Al atom and the length of an edge E of the unit cell is
 - (A) r = 0.354E (B) r = 0.433E (C) r = 0.5E

- (D) r = 2E
- (E) r = 4E
- 85. Which of the following statements correctly describes the signs of q (heat) and w (work) for the following exothermic process at P = 1 atm and T = 370 K? $H_2O_{(g)} \longrightarrow H_2O_{(1)}$
 - The q and w are both negative.
- (B) The q is positive, but the w is negative.
- (C) The q and w are both positive.
- (D) The q is negative, but the w is positive.
- (E) The q and w are both zero.
- 86. Carminic acid, a naturally occurring red pigment extracted from the cochineal insect, contains 53.66% C, 4.09% H and 42.25% O by mass. A titration required 10.00 mL of 0.5 M NaOH to neutralize 2.46 g carminic acid. Assuming there is only one acidic hydrogen per molecule, what is the empirical formula and molecular formula of carminic acid? (Na = 23.0 g/mole)
 - empirical formula: C₂₂H₂₀O₁₃; molecular formula: C₄₄H₄₀O₂₆
 - (B) empirical formula: C₂₂H₂₀O₁₃; molecular formula: C₂₂H₂₀O₁₃
 - empirical formula: C₄₄H₄₀O₂₆; molecular formula: C₂₂H₂₀O₁₃
 - empirical formula: C₂₆H₂₀O₁₀; molecular formula: C₂₆H₂₀O₁₀ (D)
 - (E) empirical formula: C₂₆H₂₀O₁₀; molecular formula: C₅₂H₄₀O₂₀
- 87. Biphenyl (C₁₂H₁₀) is an organic molecule formed by connecting two benzene rings via single bond. Which of the following statements about biphenyl molecules is **incorrect**?
 - Benzene is an aromatic compound.
 - The molecular structure has twelve carbon atoms in a coplanar fashion.
 - The molecular structure has five hydrogen atoms in a coplanar fashion. (C)
 - (D) The molecule has a total of six double bonds.
 - (E) The molecular hybridization in this molecule are the same as graphite.
- 88. Which of the following molecules is achiral?

89. Which of the following molecules possesses the strongest acidity?

90. What monomer(s) is/are needed to synthesize the polymer shown below?

- I. HOCH2CH2OH
- II. HOOCCH2CH2COOH
- III. HOCH2CH2COOH

- IV. HOCH=CHOH
- V. HOOCCH=CHCOOH

- (A) II
- (B) III
- (C) I and II
- (D) IV and V
- (E) II and III

【版權所有,翻印必究】

後醫-物理及化學

題號	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
答案	Е	D	Е	В	D	В	С	D	C	В	В	В	D	В	Е	Α	В	D	Е	Е
題號	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
答案	D	A	С	A	D	C	A	В	С	D	В	С	С	D	С	В	Α	D	В	Е
題號	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
答案	Α	Е	Α	Α	A	D	Α	Е	D	D	Α	Α	Е	С	A	A	D	A	D	Е
題號	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
答案	Е	C	D	В	C	В	Е	D	Α	В	Е	D	В	С	D	С	D	В	С	Α
題號	81	82	83	84	85	86	87	88	89	90										
答案	Е	C	Е	A	D	В	В	Е	A	С										

【 版權所有,翻印必究 】

高雄醫學大學 113 學年度學士後醫學系招生考試試題參考答案疑義釋疑公告

科目	題號	釋疑答覆	釋疑結果
	48	題目內文「,to what value must we raise its temperature?」,問的是要升到多少數值,而非學生所說的"此敘述應可解讀為「提升幾度 ΔK (value)」"。	維持原答案
物理	49	題目上 y-axis 的單位為 kPa,因此答案應該為 kJ而不是 J,故選項中無正確答案。	無正確答案 送分
- 王		Cp = Cv + R Cp = (25)/(n△T) = (25R)/(P△V) = (25*8.31)/(1.01*10^5*20*10^-6) = 102.72 ~ 100 Cv = Cp - R = 102.7-8.31 = 94.41 ~ 95 由於沒有特別問 Cp or Cv, 因此選擇答案(D)或(E)都給分都給分。	(D)或(E)

高雄醫學大學 113 學年度學士後醫學系招生考試試題參考答案疑義釋疑公告

科目	題號	釋疑答覆	釋疑結果						
	18	經計算, AIP 放光波長為 496 nm·於藍光和綠光的邊界·因	答案更改為						
		此答案更改為(D)或(E)。	(D) 或						
	72	該題無正確答案,此題送分。	送分						
化學	73	題目敘述為密閉容器,體積固定,原答案無誤。							
	83	[Pt(PPh ₃) ₂ (NCS) ₂]的(NCS)有兩種配位形式,故共有六種異構	原答案不變						
	0.5	物,原答案無誤。							
	87	聯苯結構在較穩定構型中,為 6 個氫共平面,故選項(B)也為	答案更改為						
		錯誤選項·答案更改為(B)或(C)。	(B) 或						

高雄醫學大學 113 學年度學士後醫學系招生考試試題參考答案疑義釋疑公告

科目	題號	工程	釋疑結果
	18	經計算, AIP 放光波長為 496 nm·於藍光和綠光的邊界·因	答案更改為
		此答案更改為(D)或(E)。	(D) 或
	72	該題無正確答案,此題送分。	送分
化	73	由於題目定義不夠完整,可能導致多重答案的存在,故此題	送分
學		送分。	
	83	[Pt(PPh ₃) ₂ (NCS) ₂]的(NCS)有兩種配位形式,故共有六種異構	原答案不變
		物,原答案無誤。	小百木小笠
	87	聯苯結構在較穩定構型中,為 6 個氫共平面,故選項(B)也為	答案更改為
		錯誤選項·答案更改為(B)或(C)。	(B) 或

物理

程量子(陳宗德)老師提供

- 1. A 10 g object connected to one end of a massless spring undergoes 50 oscillations in 5 seconds. What is the spring constant?
 - (A) 5 N/m
- (B) 10 N/m
- (C) 20 N/m
- (D) 30 N/m
- (E) 40 N/m

1. 解:(E)

50 oscillations in 5 seconds,表示頻率 f = 10[Hz]

$$\omega = \sqrt{\frac{k}{m}} = 2\pi f \Rightarrow \sqrt{\frac{k}{0.01}} = 2\pi \times 10 \Rightarrow k = 39.43[N/m]$$

- 2. If a simple pendulum oscillates with small amplitude and its length is doubled, what happens to the frequency of its motion?
 - (A) It doubles.

(B) It becomes $\sqrt{2}$ times as large.

(C) It becomes half as large.

(D) It becomes $1/\sqrt{2}$ times as large.

- (E) It remains the same.
- 2. 解:(D)

$$\omega = \sqrt{\frac{g}{l}} \Rightarrow l' = 2l \Rightarrow \omega' = \frac{\omega}{\sqrt{2}}$$

- 3. A certain spring that obeys Hooke's law is stretched by an external agent. The work done in stretching the spring by 10 cm is 4 J. How much additional work is required to stretch the spring an additional 10 cm?
 - (A) 2 J
- (B) 4 J
- (C) 8 J
- (D) 10 J
- (E) 12 J

3. 解:(E)

$$U_S = \frac{1}{2}k(\Delta x)^2 \Rightarrow 4 = \frac{1}{2}k(0.1)^2 \Rightarrow k = 800$$

$$U_S = \frac{1}{2}k(\Delta x)^2 = \frac{1}{2} \times 800 \times (0.2)^2 = 16[J]$$

$$\Delta U_s = 16 - 4 = 12[J]$$

4. A child plays a string of length = 20 cm connected with a ball of mass m = 1 kg, and starts to rotate it vertically. Find the minimum speed of the ball at the top that is needed to rotate it vertically in circular fashion?

(Gravitational acceleration $g = 10 \text{ m/s}^2$)

- (A) 0.7 m/s
- (B) 1.4 m/s
- (C) 2.2 m/s
- (D) 3.3 m/s
- (E) 4.2 m/s

4. 解:(B)

$$v_c = \sqrt{Lg} = \sqrt{0.2 \times 10} = 1.41 [m/s^2]$$

12. A gas undergoing a series of pressure and volume changes from a state (a) to state (b) by the following five paths. Which of the following paths requires the highest work for the changing?

····// P-V圖曲線底下的面積最大

13. The speed of a transverse wave on a string is 170 m/s when the string tension is 120 N. To what value must the tension be changed to raise the wave speed to 180 m/s?

- (A) 120 N
- (B) 125 N
- (C) 130 N
- (D) 135 N
- (E) 140 N

13. 解:(D)

$$v = \sqrt{\frac{T}{\mu}}$$

$$\frac{170}{180} = \sqrt{\frac{120}{T}} \Rightarrow T = 134.5[N]$$

- 14. Which of the following aberrations is related to the wavelength of light?
 - (A) spherical aberration
- (B) chromatic aberration
- (C) coma

- (D) astigmatism
- (E) distortion

14. 解:(B)

色差與波長有關

- 15. An ideal fluid flows through a horizontal pipe whose diameter varies along its length. Measurements would indicate that the sum of the kinetic energy per unit volume and pressure at different sections of the pipe would_____.
 - (A) decrease as the pipe diameter increases
 - (B) increase as the pipe diameter increases
 - (C) increase as the pipe diameter decreases
 - (D) decrease as the pipe diameter decreases
 - (E) remain the same as the pipe diameter changes

15. 解:(E)

horizontal pipe

伯努力方程式
$$P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2$$

連續性方程式 $A_1 v_1 = A_2 v_2$

38. A gun fired vertically and hits a wooden block and stops inside. The bullet and block have a mass of 0.1 and 0.5 kg, respectively. The velocity of bullet is 100 m/s. How high will the wooden block be raised?

(Gravitational acceleration $g = 10 \text{ m/s}^2$)

- (B) 10 m
- (C) 12 m
- (D) 14 m
- (E) 16 m

38. 解:(D)

由線動量守恆 $0.1 \times 100 = (0.1 + 0.5)v \Rightarrow v = 16.67$ 由力學能守恆 $\frac{1}{2}(0.1+0.5)(16.67)^2 = (0.1+0.5) \times 10 \times h \Rightarrow h = 13.89[m]$

- 39. One particle of mass $M = 0.5 \times 10^{-9}$ kg and velocity $V = 4 \times 10^{5}$ m/s directly hits the other particle of mass $m = 0.1 \times 10^{-9}$ kg and velocity v = 0 m/s. Find the maximum energy transfer from one particle to the other?
 - (A) 15 J
- (C) 29 J
- (D) 36 J
- (E) 43 J

39. 解:(B)

假設彈性碰撞,則

模式更单性创建,則
$$v_1' = (\frac{m_1 - m_2}{m_1 + m_2})v_1 + (\frac{2m_2}{m_1 + m_2})v_2 = \frac{0.4 \times 10^{-9}}{0.6 \times 10^{-9}} \times 4 \times 10^5 = 2.7 \times 10^5$$

$$v_2' = (\frac{2m_1}{m_1 + m_2})v_1 + (\frac{m_2 - m_1}{m_1 + m_2})v_2 = \frac{2 \times 0.5 \times 10^{-9}}{0.6 \times 10^{-9}} \times 4 \times 10^5 = 6.7 \times 10^5$$
the maximum energy of the other particle

$$K_f = \frac{1}{2} \times (0.1 \times 10^{-9}) \times (6.7 \times 10^5)^2 = 22.44[J]$$

- 40. If two springs with spring constants k and 3k respectively are connected in series and attached to an object with mass m, what is the oscillation frequency of the springs?
 - (A) $\sqrt{k/m}$ (D) $\sqrt{k/m}/2\pi$
- (B) $\sqrt{3k/4m}$ (E) $\sqrt{3k/4m}/2\pi$
- (C) $\sqrt{3k/m}/2\pi$

40. 解:(E)

$$\frac{1}{k} + \frac{1}{3k} = \frac{1}{k'} \Rightarrow k' = \frac{3}{4}k$$

$$\omega = \sqrt{\frac{k'}{m}} = \sqrt{\frac{3k}{4m}} = 2\pi f \Rightarrow f = \frac{1}{2\pi}\sqrt{\frac{3k}{4m}}$$

49. In the figure, a gas enclosed within a sealed chamber follows a closed path as illustrated. What is the total amount of work performed by the gas?

- (D) -20 J
- (E) -40 J

49. 解:(送分)

$$\frac{(5+3)\times 10^3 \times 5}{2} = 20[kJ]$$

50. When a fixed pressure of one atmosphere is maintained, an ideal gas receives 25 J of energy in the form of heat. During this process, the gas's volume expands from 20 cm³ to 40 cm³. What is the molar specific heat of this ideal gas?

(The universal gas constant $R = 8.31 \text{ J/mol} \cdot \text{K}$, 1 atm = $1.01 \times 10^5 \text{ Pa}$)

- (A) 80 J/mol·K (B) 85 J/mol·K (C) 90 J/mol·K (D) 95 J/mol·K (E) 100 J/mol·K
- 50. 解:(D)(E)

$$\Delta Q = nC_p (T_f - T_i) = nC_p (\frac{PV_f}{nR} - \frac{PV_i}{nR}) = \frac{P}{R} C_p (V_f - V_i)$$

$$25 = \frac{1.01 \times 10^5}{8.31} C_p (40 \times 10^{-6} - 20 \times 10^{-6}) \Rightarrow C_p = 102.8$$

$$C_v = C_p - R = 102.8 - 8.31 = 94.49$$

- 51. Two objects with temperatures T1 and T2 (T2 = 2T1) are isolated from their surroundings. A small amount of heat Q is transferred without changing their temperatures. What is the total entropy change of the two objects?
 - (A) $(1/2) \cdot (Q/T1)$
- (B) $(3/2) \cdot (Q/T1)$ (E) $(1/4) \cdot (Q/T2)$

51. 解:(A)

高溫到低溫

$$\Delta S_{1} = \frac{Q}{2T_{1}} - \frac{Q}{1.5T_{1}} = -\frac{1}{6} \frac{Q}{T_{1}}$$

$$\Delta S_{2} = \frac{Q}{1.5T_{1}} - \frac{Q}{T_{1}} = -\frac{1}{3} \frac{Q}{T_{1}}$$

$$\Delta S = \Delta S_{1} + \Delta S_{2} = -\frac{1}{6} \frac{Q}{T_{1}} + (-\frac{1}{3} \frac{Q}{T_{1}}) = -\frac{1}{2} \frac{Q}{T_{1}}$$

52. The figure shows the configuration of a beam-expander (5x) formed by two positive lenses with focal lengthes f_l and f_2 . The distance between two lens is 12 cm. W_l and W_f denote the input and output laser beam diameters, respectively. What is the laser focal point in the system?

- (B) 2.0 cm away from the input lens
- (B) 4.0 cm away from the input lens
- (C) 6.0 cm away from the input lens
- (D) 8.0 cm away from the input lens
- (E) 10.0 cm away from the input lens
- 52. 解:(A)

一號鏡子的高是二號鏡子的1/5,焦距比 $f_1: f_2 = 1:5 = 2:10$

- 53. A police car with a 500 Hz siren is moving at 20 m/s. What is the total frequency change when the police car is approaching and then leaving the listener? (sound speed in the air is 344 m/s)
 - (A) 32 Hz
- (B) 36 Hz
- (C) 48 Hz
- (D) 52 Hz
- (E) 58 Hz

53. 解:(E)

$$f' = \frac{344}{344 + 20} \times 500 = 472.5[Hz]$$

$$f'' = \frac{344}{344 - 20} \times 500 = 530.9[Hz]$$

$$\Delta f = f'' - f' = 58.4[Hz]$$

- 54. A doppler flow meter transmit ultrasound of 10 MHz to measure the blood flow. If the reflected sound of 9.9 MHz is recorded by the same probe, find the speed of the blood flow. (sound speed in the tissue is 1500 m/s)
- (A) 5.5 m/s
- (B) 6.5 m/s
- (C) 7.5 m/s
- (D) 8.5 m/s
- (E) 9.5 m/s

54. 解:(C)

假設聲源(probe ultrasound)不動,接收者(blood)遠離聲源,則有

$$f' = \frac{1500 - v}{1500} \times 10$$

之後接收者當作新的聲源(blood),遠離新的接收者(probe ultrasound),新的接收者有

$$9.9 = \frac{1500}{1500 + v} \times f'$$

綜合以上兩式

$$9.9 = (\frac{1500}{1500 + v}) \times (\frac{1500 - v}{1500}) \times 10 \Rightarrow v = 7.53 [m/s]$$

其他試題詳解,歡迎參考高點出版 67MU2017【物理歷屆試題解析】一書,學士後相關書籍出版詳情,請上高點網路書店查詢。

梁傑(梁家榮)老師提供

16. A point in the wave function where the amplitude is zero defines ___ A (A) the node

(B) the excited state

普化正課 page 5-58

- (C) the amplitude of the wave function
- (D) the frequency of radiation

(E) none of the above

amplitude = 0 的位置, $\Psi^2 = 0$, 稱為節點(node)

18. The band gap of the semiconductor aluminum phosphide (AIP) is 2.5 eV. What color of light is emitted by AIP diode? (1 eV = 1.6×10^{-19} J; Planck's constant: 6.626×10^{-34} J·s = 4.136×10^{-15} eV·s)

D or E

Е

Ē

D

- (C) yellow

普化正課 page 5-22

$$\Delta E = \frac{hc}{\lambda} \Rightarrow 2.5 \text{ eV} = \frac{4.136 \times 10^{-15} \text{ eV} \cdot \text{s} \times (3 \times 10^{8} \text{ m/s})}{\lambda}$$

$$\Rightarrow \lambda = 4.96 \times 10^{-7} \text{ m} = 496 \text{ nm}$$

[此放射波長為藍綠色,造成(D)和(E)選項具有爭議] 備註:釋疑後,(D)和(E)皆給分

19. Which radiation is applied in nuclear magnetic resonance (NMR) technique?

普化正課

- (A) X-ray
- (B) ultraviolet (C) infrared
- (D) visible
- (E) radio wave

page 2-30

原子核在磁場中產生自旋方向改變,對應的電磁輻射為 radiowave

20. Which of the following reactions is a disproportionation reaction?

- (A) $HCl_{(aq)} + NaOH_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(1)}$
- (B) $Cl_{2(aq)} + 2I^{-}_{(aq)} \rightarrow I_{2(aq)} + 2Cl^{-}_{(aq)}$

普化正課 page 4-45

- (C) $CaSiO_{3(s)} + 8HF_{(aq)} \rightarrow H_2SiF_{6(aq)} + CaF_{2(aq)} + 3H_2O_{(l)}$
- $(D) \quad AgNO_{3(aq)} + NaCl_{(aq)} \rightarrow \quad AgCl_{(aq)} + NaNO_{3(aq)}$
- (E) $Cl_{2(aq)} + 2NaOH_{(aq)} \rightarrow NaClO_{(aq)} + NaCl_{(aq)} + H_2O_{(l)}$

disproportionation reaction = 自身氧化還原反應

- 21. Specify the number of unpaired electrons in CoF₆³⁻ (F⁻ ion is a weak field ligand).
 - (A) 0
- (B) 1
- (C) 2
- (E) 5

普化正課 page 6-163

113 高點醫護|後西醫考後試題解析【高醫專刊】

	27. You are holding four identical balloons each containing 10.0 g of a different gas. The balloon	
A	containing which gas is the largest balloon?	
	(A) H_2 (B) H_2 (C) N_2	普化正課 page 7-24
	(D) O_2 (E) All balloons have the same volume.	page 7-24
	題目提到氣球,意即氣體「同溫同壓」,此時: V × N	
	28. What is the simplest formula of a solid containing three types of atoms in a cubic lattice in which	
В	the A, B, and C atoms respectively occupy the corners, the body-center, and the faces-centers of	普化正課 page 8-51
	the unit cell?	1 0
	(A) ABC (B) ABC ₃ (C) ABC ₆ (D) A ₈ BC ₆ (E) A ₄ BC ₃	
	A在comer: $\frac{1}{8} \times 8 = 1$ B在body-center: $1 \times 1 = 1$ C在face-center: $\frac{1}{2} \times 6 = 3$	
	A # comer· 8 ^ 0 - 1	
	B 在 body-center: x =	
	C $\stackrel{\cdot}{a}$ face-center: $\frac{1}{2} \times 6 = 3$	
C	29. Among the following covalent bonds, which one has the smallest bond energy?	正課講義
	(A) C–C (B) C–O (C) C–S (D) C–Cl (E) C–F	page 6-99
	鍵能大小:C-F>C-O>C-C>C-Cl>C-S	
	鍵能大小: C-F>C-O>C-C>C-CI>C-S	
	2年56 1787 121 24 36 1887 125 125 125 125 125 125 125 125 125 125	
	EN: F>0>C EN: C >S	
	30. Which of the following changes shifts the equilibrium position toward product side in the	
Ъ	endothermic decomposition reaction as follows: $C_2H_4(Q_2) = C_2H_4(Q_1) + 3CQ_4(Q_2)$	
D		:正課 : 11-38
	(D) increase in temperature (E) decrease in container volume	
	反應吸熱(endothermic),升溫將使平衡向右	
	61. Which of the following carbon atoms exhibits an oxidation state of +3?	
Е		
		上正課
		e 4-50
	H H HO OH	
	·	
	(A) I (B) II (C) III (D) IV (E) V	
	ON = -1 $ON = +2$	

113 高點醫護|後西醫考後試題解析【高醫專刊】

- 64. What concentration of glucose in water is needed to produce an aqueous solution isotomic with blood? Give the osmotic pressure of blood at 25°C is 7.70 atm. (R = 0.082 atm · L/mol · K)
- 普化正課 page 9-64

(A) 0.158 N

В

C

 \mathbf{E}

- (B) 0.315 M
- (C) 0.630 M
- (D) 1.580 M
- (E) 3.15 M

 $7.7 = 1 \times C_{M} \times 0.082 \times 298 \implies C_{M} = 0.315 \text{ M}$

- 65. Which of the followings is **not** necessary for protein synthesis at the stage of peptide bonds formation?
- 普化正課 page 16-51

- (A) amino acids
- (B) mRNA
- (C) DNA

- (D) tRNA
- (E) ribosomes

DNA負責將基因訊息傳遞製成mRNA,完成轉錄步驟 (此步驟與peptide bond formation無關)

再依據mRNA轉錄所得的基因訊息製造可以參與化學反應的各種蛋白質 (mRNA由細胞核移出,進入細胞質中,讓tRNA一方面辨識mRNA傳遞的基因訊息,另一方面攜帶 與基因訊息相對應的胺基酸到位於細胞質的核醣體上,讓核醣體把這些胺基酸合成為蛋白質)

71. Below reaction was studied at -10°C and the following results were obtained.

 $2NO(g) + Cl_{2(g)} \rightarrow 2NOCl_{(g)}$

 [NO]0
 [Cl₂]0
 Initial Rate (mol/L) (mol/L)

 0.10
 0.10
 0.18

 0.10
 0.20
 0.36

 0.20
 0.20
 1.45

普化正課 page 14-14

Considering the rate law of this reaction, what's the unit of the rate constant?

- (A) $(\text{mol/L})^2 \cdot \text{min}^{-1}$
- (B) $(\text{mol/L})^1 \cdot \text{min}^{-1}$
- (C) (mol/L)⁰ · min⁻¹

- (D) (mol/L)-1 · min-1
- (E) (mol/L)-2 · min-1

- 75. A product is electroplated by copper from CuSO₄ solution. A constant current of 9.65 amp is applied by an external power supply. How long will it take to deposit 6.35×10^2 g of Cu onto the surface of product? (Cu = 63.5 g/mol) (1F = 96485 C/mol)
 - (A) 14.22 s
- (B) 8.9 min
- (C) 2.54 h
- (D) 55.5 h
- (E) 1.37 days

普化正課 page 13-29

 $\frac{9.65 \text{ C}}{1 \text{ Sec}} \times \text{t} \times \frac{1 \text{ mol } \text{e}}{96500 \text{ C}} \times \frac{1 \text{ mol } \text{Cu}}{2 \text{ mol } \text{e}} \times \frac{63.5 \text{ g Cu}}{1 \text{ mol } \text{Cu}} \approx 6.35 \times 10^{2} \text{ g Cu}$

t = 200000 sec = 3333.3 min = 55.5 hr = 2.3 | days

113 高點醫護|後西醫考後試題解析【高醫專刊】

87. Biphenyl (C₁₂H₁₀) is an organic molecule formed by connecting two benzene rings via single bond. Which of the following statements about biphenyl molecules is **incorrect**?

B or C

Ē

A

C

- (A) Benzene is an aromatic compound.
- The molecular structure has twelve carbon atoms in a coplanar fashion.
- The molecular structure has five hydrogen atoms in a coplanar fashion.

The molecule has a total of six double bonds.

The molecular hybridization in this molecule are the same as graphite.

普化正課 page 6-95

在聯苯的最穩定構型中: 共有 8 個碳共平面,(B)錯誤 共有 6 個氫共平面,(C)錯誤

(E) V

88. Which of the following molecules is achiral?

O₂N-(A) I (B) II (C) III (D) IV

普化正課 page 6-151

89. Which of the following molecules possesses the strongest acidity?

(A) I (B) II (C) III (D) IV (E) V

NO₂是強拉電子基,最能穩定 H+解離後產生的 anion, cpd I 的酸性最高

90. What monomer(s) is/are needed to synthesize the polymer shown below?

普化正課

普化正課

page 0-50

I. HOCH2CH2OH

II. HOOCCH2CH2COOH

page 16-87

- IV. HOCH=CHOH
- V. HOOCCH=CHCOOH
- (A) II
- (B) III
- (C) I and II
- (D) IV and V
- (E) II and III

III. HOCH2CH2COOH

請上高點網路書店查詢。

其他試題詳解,歡迎參考高點出版 67MU2001【後西醫化學歷屆試題精解】一書, 學士後相關書籍出版詳情,