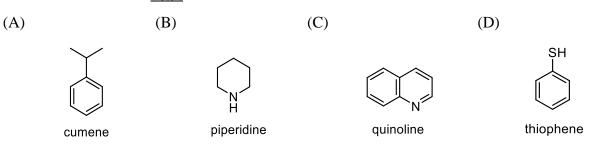

1. 下列反應何者可以得到預期產物?

2. 下列化合物進行單一烷基化之產物為何?

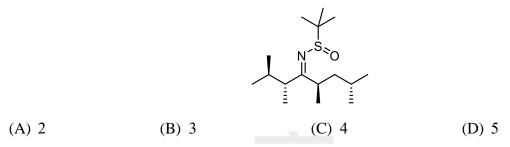

1. O₃

3. 下列反應之產物為何?

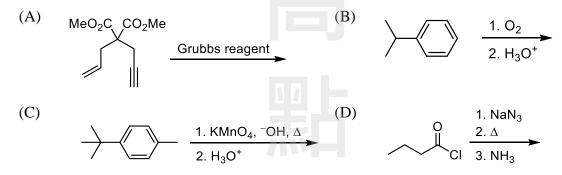
(A) (B) (C) (D)
$$\begin{array}{c} CO_2Me \\ CO_2Me$$

3. CH₂N₂

4. 下列化合物的名稱何者有誤?


- 5. 下列人名反應何者產物不是醛?
 - (A) Gattermann-Koch 反應

(B) Kolbe-Schmitt 反應


(C) Reimer-Tiemann 反應

(D) Rosenmund 還原反應

6. 下列化合物含有多少個掌性中心(chiral center)?

7. 下列哪個反應的產物所含碳原子數目與起始物不同?

8. 下列反應所使用的最佳試劑為何?

(A) HBr, ROOR, Δ

(C) 1) Br_2 , 2) H_2 , Pd/C

9. 下列化合物進行消去反應的主要產物為何?

$$(A) \qquad (B) \qquad (C) \qquad (D) \qquad (D)$$

10. 下列化合物(I-IV)的 pK_a 由大到小依序為:

(A) III > I > II > IV (B) III > II > IV (C) IV > I > II > III (D) IV > II > III

		.0 1	- 00	
11.		質譜中分子離子(mole 鹵素數目及種類為何?		7各個訊號之相對強度,
		$M^{+}(51); M^{+}+2$	$2(100)$; $M^+ + 4(49)$	
	(A) 1 個 Br	(B) 2 個 Br	(C) 2個Cl	(D) 1個Br,1個Cl
12.		偶數個碳原子,將 1 3 物的同分異構物共有多		於燒,需消耗 6 莫耳的
	(A) 3	(B) 4	(C) 5	(D) 6
13.			t半生期為 t。若將 16 元 七系統的總壓會變為 23	大氣壓的笑氣置於一固定 3 大氣壓?
	(A) 2.0t	(B) 2.5t	(C) 3.0t	(D) 4.0t
14.			- mA ⁿ⁺ (aq) + nB ^{m-} (aq) 化學式可能為下列何者	平衡時,溶解度積常數可 台?
	(A) AB	(B) AB ₂	(C) AB ₃	(D) A ₂ B
15.	等重量的丙烯與環丁	烷,下列敘述何者正确	笙?	
	(C) 兩者完全燃燒後	目的分子 ,所釋放的熱量相同 ,所生成的水分子數相 ,所消耗的氧氣分子數	詞	
16.	• ,) + H ₂ O(<i>l</i>),則將 10.8 Ag 的原子量為 108.0 g/	克的銀與硫化氫 3.4 克和 mol)
	(A) Ag 是限量試劑 (C) Ag 與 H ₂ S 皆是限	見量試劑	(B) H ₂ S 是限量試劑 (D) Ag ₂ S 最多生成 (
17.	HCN 及 HF 於 25 ℃ 順序為何?	時,在水中的 Ka 分別	J為 6.2 × 10 ⁻¹⁰ 及 7.2	× 10 ⁻⁴ ,則以下鹼的強度
	(A) $CN^- > F^- > H_2O$	(B) $F^- > CN^- > H_2O$	(C) $F^-> H_2O > CN^-$	(D) $H_2O > F^- > CN^-$
18.	已知 0.1 莫耳 CoCl ₃ ·x (水的凝固點下降常數		所生成之溶液在-1.48	8℃凝固,則x為多少?
	(A) 3	(B) 4	(C) 5	(D) 6
19.		氫鈉水溶液 80 毫升可 少毫升的 0.1 <i>M</i> 過錳酸		溶液 40 毫升作用達到當量
	(A) 16 毫升	(B) 32 毫升	(C) 64 毫升	(D) 80 毫升
20.	下列鹵素離子在二甲	基甲醯胺中,何者是最	曼佳的親核劑?	
	(A) Br ⁻	(B) C1 ⁻	(C) F ⁻	(D) I ⁻

21.	請問 10 毫升 12 M的水溶液相近?(醋酸的	_	少體積,	其溶液的 pH	值才會與 0.90 <i>M</i> 的醋酸				
	(A) 30 毫升	(B) 300 毫升	(C) 3升	•	(D) 30升				
22.	已知 Mn + Zn ²⁺ → Zn 何者正確?	$+ Mn^{2+}$, Fe + Co ²⁺ -	\rightarrow Fe ²⁺ + Co	o , ∇ Fe + Zn ²	+不發生反應,則下列				
	(A) 還原力: Fe > Co(C) 氧化力: Co²⁺ > I		` ′ _	原力:Zn > Co 化力:Zn ²⁺ > I					
23.	下列三種金屬錯離子	,中心金屬離子所含的	的未成對質	電子總數為何	?				
	$[Zn(H2O)_{o}]$	$[Ni(CN)_4]^{2-}$ (square)	are planar)	$\cdot [Co(NH_3)_6]^3$	+ (strong field)				
	(A) 0	(B) 1	(C) 2		(D) 3				
24.	下列分子偶極距 <u>不為</u>	零的有幾個?							
	BeC	$Cl_2 \cdot CBr_4 \cdot CS_2 \cdot H_2S$	\cdot ICl ₃ \cdot O	$o_3 \cdot SF_4 \cdot SO_3 \cdot$	XeCl ₂				
	(A) 2	(B) 3	(C) 4		(D) 5				
25.	下列哪個化合物在一	般條件下 <u>不會</u> 形成環況	狀結構?						
	(A)	(B)	(C)		(D)				
	CH_2OH $H \longrightarrow OH$ $H \longrightarrow OH$ $H \longrightarrow OH$ CH_2OH	CHO H → OH HO → H H → OH H → OH CH ₂ OH		CHO H—OH H—OH CH ₂ OH	CH ₂ OH				
	sorbitol	glucose		ribose	frutose				
26.	關於下列化合物(Acy	clovir)的敘述何者 <u>不</u> 」	<u>E確</u> ?						
		H ₂ N		ОН					
			Acyclovir						
	(A) 此化合物具有芳(C) 此化合物可以產		`	化合物含有一 化合物含有四					
	, , , , , , , , , , , , , , , , , , , ,	_							
27.	27. 於 25 °C 時反應 Ag ⁺ + 2NH ₃ —— [Ag(NH ₃) ₂] ⁺ 之形成常數(formation constant)為 1.5 × 10 ⁷ ;反應 Ag ⁺ + 2CN ⁻ —— [Ag(CN) ₂] ⁻ 之形成常數為 1.0 × 10 ²¹ 。 下列反應於 25 °C 時之平衡常數(equilibrium constant)為? [Ag(NH ₃) ₂] ⁺ + 2CN ⁻ —— [Ag(CN) ₂] ⁻ + 2NH ₃								
		$[\Lambda g(1)113/2] + 2C1$	- [<i>F</i>	ag(CN)2J + 2N	1113				

(A) 1.5×10^{-14} (B) 1.5×10^{14} (C) 6.7×10^{-13} (D) 6.7×10^{13}

28.	[Cr(en) ₃] ²⁺ 有多少個是	未成對電子(unpaired ele	ectron)? (en: e	thylene diamine))		
	(A) 1	(B) 2	(C) 3	(D) 5			
29.		ectrode)置於 1.0 <i>M</i> Mg 勺化學電池,計算此電			ectrode)置於 1.0 M		
		$Ag^{+}(1.0 M) + e^{-}$ $Mg^{2+}(1.0 M) + 2e^{-}$					
	(A) -1.57 V	(B) 1.57 V	(C) -3.17 V	(D) 3.	17 V		
30.	kJ/mol。計算苯由固	t of fusion)與汽化熱(he 態 — ➤ 液態與液態 – 於 5.5 °C 熔化,80.1 °C	→ 氣態過程				
	(B) $\Delta S_{\text{fus}} = 391 \text{ J/K} \cdot \text{m}$ (C) $\Delta S_{\text{fus}} = 3.91 \text{ J/K} \cdot \text{m}$	mol; $\Delta S_{vap} = 87.8 \text{ J/K} \cdot \text{mol}$ nol; $\Delta S_{vap} = 878 \text{ J/K} \cdot \text{mol}$ mol; $\Delta S_{vap} = 8.78 \text{ J/K} \cdot \text{mol}$ mol; $\Delta S_{vap} = 878 \text{ J/K} \cdot \text{mol}$	1				
31.	下列哪個酸性化合物	可用來準備 pH = 8.60	的緩衝溶液?	•			
	(A) HA $(K_a = 2.7 \times 1)$ (C) HC $(K_a = 2.6 \times 1)$, ,	$= 4.4 \times 10^{-6})$ $= 4.6 \times 10^{-12})$			
32.	三種不同鉀鹽 KX, HZ 酸度大小排列為	KY與KZ之 0.10 <i>M</i> 溶 何?	溶液的 pH 分別	為 7.0,9.0 與 1	11.0。HX,HY 與		
	(A) HX > HY > HZ	(B) $HX > HZ > HY$	(C) $HY > HZ$	Z > HX (D) H	Z > HY > HX		
33.	33. 將一含 0.750 莫耳(mol)的 H_2 與 0.750 莫耳(mol)的 I_2 置於一個一公升(1.00 -L)的不鏽鋼容器中並加熱至 430 °C。此反應 $H_2(g)+I_2(g)$ 全 $H_2(g)$ 2HI(g)之 H_2 0 H_2 1 H_2 2 H_3 3 H_3 4 H_3 5 H_3 6 H_4 7 H_4 8 H_5 7 H_5 8 H_5 9 H_5 9 H_5 9 H_5 9 H_5 9 H_5 9 H_6 9 H_6 9 H_6 9 H_6 9 H_7						
34.	乙烷形成甲基自由基	基是一級反應,在 700°	C 時速率常數	為 5.36×10 ⁻⁴ s	-1		
		$C_2H_6(g)$ —	→ 2CH ₃	(g)			
	此反應半生期為(mir	1)?					

(C) 21.5

(D) 215.0

(B) 2.15

(A) 0.215

35.		左 25 ℃ 時滲透壓為 0.e ff factor)。(氣體常數 R		算出在此濃度下碘化鉀之
	(A) 0.95	(B) 1.9	(C) 3.8	(D) 38.0
36.		氣壓(1 atm)時的溶解度 下氦氣的分壓為 0.78		在此條件下氦氣溶於水中
	(A) $3.4 \times 10^{-4} M$	(B) $3.5 \times 10^{-4} M$	(C) $5.3 \times 10^{-4} M$	(D) $8.7 \times 10^{-4} M$
37.	下列哪些化合物或離	子可以與水形成氫鍵?		
		CH ₃ OCH ₃ , CH ₄	, F ⁻ , HCOOH, Na ⁺	
	(A) F, HCOOH (C) CH ₃ OCH ₃ , HCOO	ОН, F [−]	(B) F, HCOOH, Na (D) CH ₃ OCH ₃ , CH ₄ ,	
38.	下列化合物沸點的排	列順序何者正確?		
	(A) $HI > HBr > HCl >$ (C) $H_2Te > H_2Se > H_2$		(B) $SbH_3 > AsH_3 > I$ (D) $SnH_4 > GeH_4 > S$	
39.	PF5分子中心磷原子(J	phosphorus atom)的混成	文軌域為?	
	(A) sp^3	(B) spd ³	(C) sp^2d^2	(D) sp^3d
40.	下列分子或離子哪些	是正四面體結構?		
		SiCl ₄ , SeF ₄ , X	XeF ₄ , CI ₄ , CdCl ₄ ²⁻	
	 (A) SiCl₄, CdCl₄²⁻ (C) SiCl₄, Cl₄, CdCl₄²⁻ 		(B) SeF ₄ , XeF ₄ , CI ₄ (D) SiCl ₄ , SeF ₄ , XeF	7 ₄ , CI ₄ , CdCl ₄ ²⁻
41.	下列哪個分子氦原子	與氦原子的鍵長最短?		
	(A) N ₂	(B) N ₂ O	(C) N ₂ H ₄	(D) N_2O_4
42.	2-甲基-1,3-環己二烯與	與1當量的HBr反應,	總共可生成幾個產物	1(包含立體異構物)?
	(A) 3	(B) 4	(C) 6	(D) 8
43.	下列反應的主要產物	為何?		
		^	Br ₂ NaCl (excess)	
	(A)	(B)	(C)	(D)
	CI	CI	Br	Br

44. 下列反應的主要產物為何?

$$(A) \qquad (B) \qquad (C) \qquad (D)$$

$$(A) \qquad (B) \qquad (C) \qquad (D)$$

$$(A) \qquad (B) \qquad (C) \qquad (D)$$

45. 下列反應的主要產物為何?(Ts = -SO₂C₆H₄CH₃)

46. 下列反應的主要產物為何?

47. 依據離子半徑大小(由大到小)排列下列等電子物質。

$$Mg^{2^{+}}, Na^{+}, F^{-}, O^{2^{-}}$$

$$(A) \ F^{-} > O^{2^{-}} > Na^{+} > Mg^{2^{+}}$$

$$(B) \ Mg^{2^{+}} > Na^{+} > O^{2^{-}} > F^{-}$$

$$(C) \ Mg^{2^{+}} > O^{2^{-}} > Na^{+} > F^{-}$$

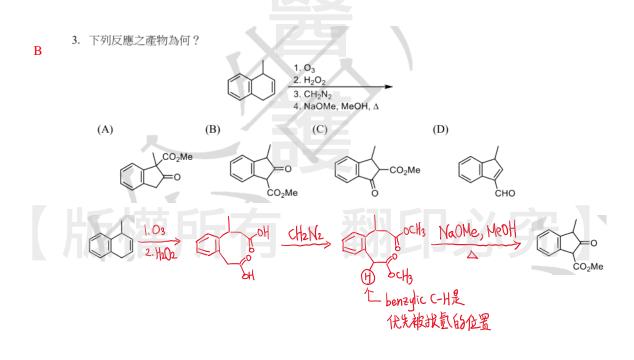
$$(D) \ O^{2^{-}} > F^{-} > Na^{+} > Mg^{2^{+}}$$

48. 下列反應的主要產物為何?

中國醫藥大學 113 學年度學士後中醫學系入學招生考試化學試題參考答案

題號	答案								
1	С	11	В	21	D	31	С	41	A
2	В	12	D	22	С	32	A	42	С
3	В	13	С	23	A	33	С	43	A
4	D	14	D	24	С	34	С	44	A
5	В	15	С	25	A	35	В	45	В
6	В	16	A	26	D	36	С	46	A
7	В	17	A	27	D	37	С	47	D
8	A	18	D	28	В	38	D	48	В
9	В	19	В	29	D	39	D	49	A
10	D	20	С	30	A	40	С	50	В

【版權所有,翻印必究


中國醫藥大學 113 學年度學士後中醫學系入學招生考試試題標準答案疑義釋疑公告 113.7.17

科目	題號	釋 疑 答 覆	釋疑結果
	6	題目中之化合物所具有的掌性中心總共有三個,位置如下圖星號所示,兩個為碳原子,另一個為硫原子,因硫原子上除了三個取代基之外,仍含有一對電子,可視為第四個取代基,所以硫原子上總共有四個不同的取代基,因此其為一掌性中心,所以維持原答案。	維持原答案
化學	42	2-甲基-1,3-環己二烯與 1 當量的 HBr 反應,會進行 1,2-與 1,4-加成,首先會先行成 I 與 II 這兩個中間體(因較穩定,如下圖),之後再由這兩個中間體與 Br 反應,生成 A (1,2-加成產物)、B (1,4-加成產物)、C (1,4-加成產物)及 D (1,2-加成產物)四個產物,但因 C 與 D 為同一物,所以產物只有三個,而每一個產物都有一組鏡像異構物,因此產物的總數為六個,所以維持原答案。	維持原答案
	43	1) 烯類化合物首先和 Br ₂ 反應生成 bromonium ion; 2) 接下來過量的氯離子和第一步的反應生成的溴離子(Br ⁻ , bromide)競爭,作爲親核性試劑與第一步生成的 bromonium ion 開環後形成的二級碳正離子反應,生成最終產物。至於過量的氯離子親核性較弱,因此無法進行進一步的取代反應。本題維持原答案。	維持原答案
	46	本題產物少畫出一個碳原子(CH ₂), <mark>本題送分</mark> 。	本題送分

化 學

梁 傑(梁家榮)老師提供

2. 下列化合物進行單一烷基化之產物為何?

5. 下列人名反應何者產物不是醛?

B (A) Gattermann-Koch 反應

- (B) Kolbe-Schmitt 反應
- (C) Reimer-Tiemann 反應
- (D) Rosenmund 還原反應

(A)選項說明: CO, HCl CuCl, AlCl3

(B)選項說明: CO2 H30[†] OH (產物不是睡)

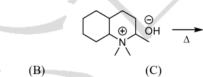

(C)選項說明: CHC/3 H30[†] H

6. 下列化合物含有多少個掌性中心(chiral center)?

(B) 3

В

(A) 2


(C) 4 (D) 5

共有35chiral center 注意硫身上标子会翻転的Lone pair

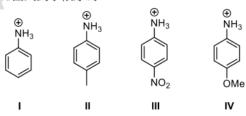
版權所有

9. 下列化合物進行消去反應的主要產物為何?

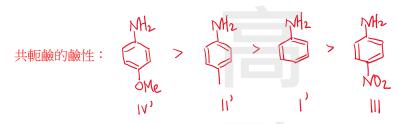
В

(A) (B)

(B)


(D)

Hofmann Elimination 的位向選擇:(1)優先消去級數最低的 β -H (2)取代基最少的 C=C 優先生成


113 高點醫護|後中醫考後試題解析【中國醫專刊】

10. 下列化合物(I-IV)的 pK_a 由大到小依序為:

D

(A) III > I > II > IV (B) III > II > I > IV (C) IV > I > III (D) IV > II > III

矢会

12. 某一烴類化合物含有偶數個碳原子,將 1 莫耳此烴類化合物完全燃燒,需消耗 6 莫耳的 氧氣,則該烴類化合物的同分異構物共有多少種?

- (A) 3
- (B) 4
- (C) 5
- (D) 6
- (1)假設該烴類化合物的化學式為 CxHy, 且 x 為偶數
- (2)1 mol該烴類可以消耗6 mol O₂

$$C_{X}H_{Y} + 602 \rightarrow \chi CO_{2} + \frac{4}{2}H_{2}O$$

(3)方程式中的氧數量守恆: $2\chi + \frac{1}{2} = |2\rangle \Rightarrow 4\chi + \chi = 24$

(4) C₄H₈的同分異構物共有6種

113 高點醫護|後中醫考後試題解析【中國醫專刊】

D 14. 某一難溶鹽 $A_m B_n$ 在水中達 $A_m B_n(s)$ \longrightarrow $mA^{n+}(aq) + nB^{m-}(aq)$ 平衡時,溶解度積常數可表示為 $K_{sp} = 0.5 \times [A^{n+}]^3$,則此難溶鹽類的化學式可能為下列何者?

- (A) AB
- (B) AB₂
- (C) AB₃
- (D) A₂B

(1)由 Ksp 定義可知:

$$AmBn(s) \Longrightarrow mA^{n+} + nB^{m-}$$

$$I: Solid \qquad O \qquad O$$

$$C: -S \qquad +mS \qquad +nS$$

$$E: Solid-S \qquad mS \qquad nS$$

$$L \bowtie [A^{n+}] = mS \cdot [B^{m-}] = nS$$

$$L \bowtie [A^{n+}] = mS \cdot [B^{m-}] = (mS)^m \cdot (nS)^m$$

(2)由題目提供線索比對由定義得知的資訊:

$$k_{SP} = 0.5 \cdot \left[A^{n+}\right]^3 = 0.5 \cdot \left(mS\right)^3 = \left(mS\right)^m \cdot \left(nS\right)^n$$

$$= \left(mS\right)^m \cdot \left(\frac{m}{m} \cdot nS\right)^n = \left(mS\right)^m \cdot \left(\frac{m}{m} \cdot mS\right)^n = \left(mS\right)^{m+n} \cdot \left(\frac{m}{m}\right)^n$$

$$k_{sp} = 0.5 \cdot \left[A^{n+1}\right]^3 = \left(\frac{n}{m}\right)^n \cdot \left(mS\right)^{m+n}$$

$$m=2, n=1$$

(3)結論: A_mB_n 的化學式為 A_2B

- 16. 已知反應: $Ag(s) + H_2S(g) + O_2(g) \rightarrow Ag_2S(s) + H_2O(l)$,則將 10.8 克的銀與硫化氫 3.4 克和 氧氣 6.4 克反應後,下列敘述何者正確?(Ag 的原子量為 108.0 g/mol)
- (A) Ag 是限量試劑

- (B) H₂S 是限量試劑
- (C) Ag 與 H₂S 皆是限量試劑
- (D) AgoS 最多生成 6.2 克
- (1)用觀察法平衡反應方程式: $4Ag + 2H_2S + 0_2 \longrightarrow 2Ag_2S + 2H_2O$

Ag:
$$\frac{(10.8/108)}{4} = 0.025$$
 HrS: $\frac{(3.4/34)}{2} = 0.05$ $O_2: \frac{(6.4/32)}{1} = 0.2$ (Ag&LR, (A) ITAE)

(3)用LR的數量進行化學計量

$$Ag2S$$
的理論最大產量為: $\frac{10.8}{108}$ mol $Ag \times \frac{2 \text{ mol } Ag2S}{4 \text{ mol } Ag} \times \frac{248 \text{ g } Ag2S}{1 \text{ mol } Ag2S} = [2.4 \text{ g}]$

19. 某未知濃度的亞硫酸氫鈉水溶液 80毫升可與 0.2 M 氫氧化鈉水溶液 40毫升作用達到當量 В 點,則該溶液可使多少毫升的 0.1 M 過錳酸鉀酸性水溶液退色?

- (A) 16 毫升
- (B) 32 毫升
- (C) 64 毫升
- (D) 80 毫升

$$A/B Rxn : \left(\underbrace{N}_{M}, NaHSO_{3} \times \left(\frac{8D}{1000} \right) \times \right| = 0.2 \times \left(\frac{4D}{1000} \right) \times \right| \Rightarrow \left(\underbrace{N}_{M}, NaHSO_{3} = 0. \right) M$$

備註: $2 MnO_4^- + 6H^+ + 5HSO_3^- \rightarrow 2Mn^{2+} + 5HSO_4^- + 3H2O$

C 22. 已知
$$Mn + Zn^{2+} \rightarrow Zn + Mn^{2+}$$
, $Fe + Co^{2+} \rightarrow Fe^{2+} + Co$,又 $Fe + Zn^{2+}$ 不發生反應,則下列何者正確?

- (A) 還原力: Fe > Co > Zn (C) 氧化力: Co²⁺ > Fe²⁺ > Zn²⁺ (D) 氧化力: Zn²⁺ > Fe²⁺ >

 - (D) 氧化力: Zn²⁺ > Fe²⁺ > Co²⁺

(1)
$$M_n + Z_n^{2t} \longrightarrow Z_n + M_n^{2t}$$

 $SR SO WR WO$

- (3) Fe + Z_n^{2t} $\xrightarrow{\bullet}$ Fe^{2t} + Z_n WR WO SO SR

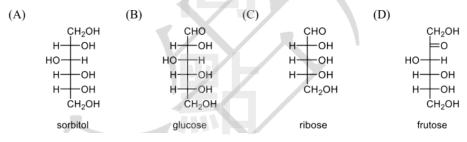
(1) $M_n + Z_n^{2t} \longrightarrow Z_n + M_n^{2t}$ SR = SO WR = WO $(2) F_e + C_0^{2t} \longrightarrow F_e^{2t} + C_0$ SR = SO = WO = WR $ERD: M_n > Z_n > F_e > C_0$

113 高點醫護|後中醫考後試題解析【中國醫專刊】

24. 下列分子偶極距<u>不為零</u>的有幾個?

 $BeCl_2 \cdot CBr_4 \cdot CS_2 \cdot H_2S \cdot ICl_3 \cdot O_3 \cdot SF_4 \cdot SO_3 \cdot XeCl_2$

- (A) 2
- (B) 3
- (C) 4
- (D) 5


dipole moment 為零者有: BeC 2、CBr4、CS2、SO3、XeC 2

dipole moment 不為零者有: $\text{H}_2\text{S} \times \text{IC}|_3 \times \text{O}_3 \times \text{SF}_4$

25. 下列哪個化合物在一般條件下不會形成環狀結構?

A

 \mathbf{C}

(A)選項屬於糖醇(sugar alcohol),沒有C=O,一般條件下無法合環

- 33. 將一含 0.750 莫耳(mol)的 H_2 與 0.750 莫耳(mol)的 I_2 置於一個一公升(1.00-L)的不鏽鋼容器中並加熱至 430 °C。此反應 $H_2(g)+I_2(g)$ 至 2HI(g)之 $K_c=54.3$ 。在反應平衡時 H_2 , I_2 與 HI 的濃度分別為何?
 - (A) $[H_2] = 1.18 M$; $[I_2] = 1.18 M$; [HI] = 0.160 M
 - (B) $[H_2] = 0.160 M$; $[I_2] = 0.160 M$; [HI] = 0.160 M
 - (C) $[H_2] = 0.160 M$; $[I_2] = 0.160 M$; [HI] = 1.18 M
 - (D) $[H_2] = 0.160 M$; $[I_2] = 1.18 M$; [HI] = 0.160 M

出題老師希望你這樣計算:

但是考試的時候沒有計算機,所以你直接看一下 K值 >> 1 表示起始物大概會剩下不多,產物會產生很多 而且因為兩個起始物在方程式中的係數相同且初始濃度也相同 因此 $[H_2]_{eq}$ = $[I_2]_{eq}$,只有(C)選項看起來比較合理

35. 0.010 M 碘化鉀溶液在 25 ℃ 時滲透壓為 0.465 大氣壓(atm)。請算出在此濃度下碘化鉀之 凡荷夫常數(van't Hoff factor)。(氣體常數 R: 0.082 L·atm/K·mol)

- (A) 0.95
- (B) 1.9
- (C) 3.8
- (D) 38.0

$$T = \lambda C_M RT \Rightarrow 0.465 = \lambda \times (0.01) \times 0.082 \times 298$$

 $\Rightarrow \lambda = 1.9$

備註:其實本題也不用算,碘化鉀是強電解質,解離度不會太差 加上化學式為 KI, 也只有(B)是比較合理的選項

38. 下列化合物沸點的排列順序何者正確?

D

В

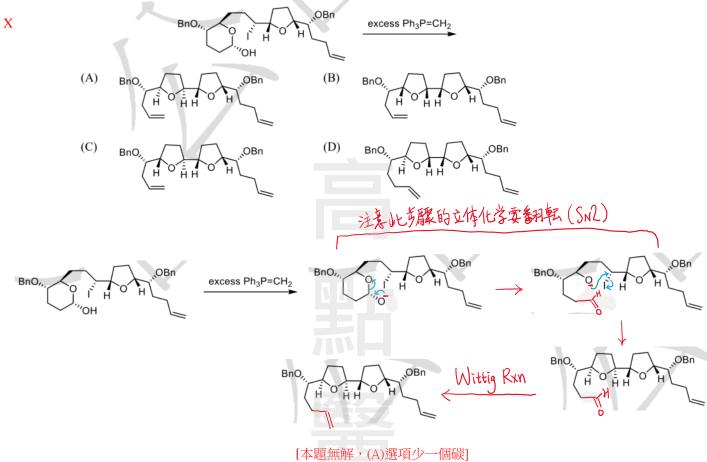
- (A) HI > HBr > HCl > HF
- (B) $SbH_3 > AsH_3 > PH_3 > NH_3$
- (C) $H_2Te > H_2Se > H_2S > H_2O$
- (D) $SnH_4 > GeH_4 > SiH_4 > CH_4$

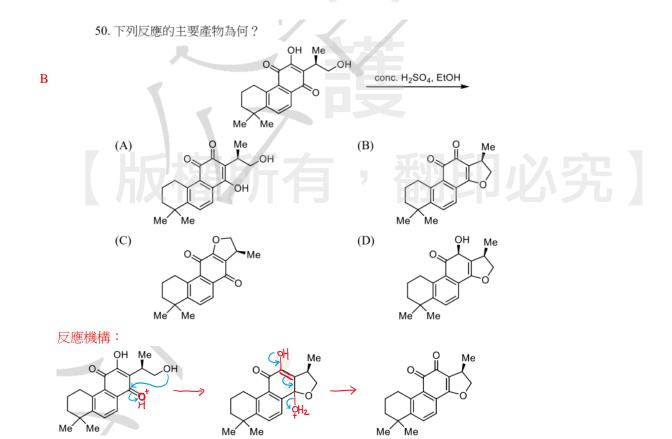
只有 4A 族的氫化物的沸點依照分子量大小排列 5A、6A、7A族的氫化物受到氫鍵的影響,沸點不完全依照分子量大小排列

42. 2-甲基-1,3-環己二烯與 1 當量的 HBr 反應,總共可生成幾個產物(包含立體異構物)?

C

43. 下列反應的主要產物為何?


A


(C)

(B)

$$\frac{\mathsf{Br}_2}{\mathsf{NaCl}\,(\mathsf{excess})} \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \xrightarrow{\mathsf{Cl}} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}$$

