高雄醫學大學 109 學年度學士後醫學系招生考試試題 科目:化學

Choose one best answer for the following questions

【單選題】每題1分,共計30分,答錯1題倒扣0.25分,倒扣至本大題零分為止,未作答,不給分 亦不扣分。1~15 題為物理,16~30 題為化學。

(A) 16	6. For 1.0 M of the (A) NaF	e following solution (B) Na ₂ S ₂ O ₃	n, which chemical g (C) NH ₄ Cl	gives the highest pF (D) Al(NO ₃) ₃	I value? (E) Ethanol
(D) 17	7. Which of the fo (A) [Ni(CN) ₆] ⁴⁻	ollowing complex is (B) $[\mathrm{Ti}(\mathrm{CN})_6]^{3-}$	diamagnetic? (C) [Cr(CN) ₆] ³⁻	(D) [Co(CN) ₆] ³⁻	(E) All of these
(C) 18	8. Which of the fo (A) N ₂	llowing molecule d (B) B ₂	oesn't exhibit the b	ehavior of <i>s-p</i> mixi (D) NO	ing of molecular orbitals? (E) All of these
(B) 19	9. Which of the fo	llowing substrate is	most likely to exh	ibit liquid crystallir	ne behavior?
	(A)		(B)	EtO	N N
	(C) H_2N	CO ₂ Et	(D)	EtO	
	(E) $C_{25}H_{51}OH$				<u> </u>
(A) 20). What is the net face-center cubic		ral holes contained	in the close packin	g of spheres unit cell like
	(A) 8	(B) 4	(C) 12	(D) 6	(E) 3
(B) 21	. Which of the fo (A) NaCl	llowing active ingre (B) NaClO	edient is most comi (C) NaClO ₂	nonly used in liquid (D) NaClO ₃	d bleaches (Sanitizers)? (E) NaClO ₄
(C) 22	amu), which is 6 the other isotope	9.09% abundant. T ?	he average atomic i	mass of Cu is 63.55	⁶³ Cu (atomic mass 62.93 amu. What is the mass of
	(A) 61.90 amu	(B) 63.10 amu	(C) 64.93 amu	(D) 65.90 amu	(E) 67.10 amu
(B) 23	3. 0.2 g of FeCl ₃ (s (A) pH > 7 (D) no effect on	(B	mL water. The pH) pH < 7) this cannot be det	(C) pH =	ution at 25 °C will be = 7
	case is spontaneous (A) ΔH is positive	ous for this reaction $\forall e, \Delta S$ is positive $\forall e, \Delta S$ is negative		e, ΔS is positive	elow. Which of the following
(E) 25				ological system. Wh	nich of the following
	transition metal i (A) Cr	is a component of v (B) Zn	itamin B ₁₂ ? (C) Fe	(D) Cu	(E) Co
(B) 26		rge of NO molecule			(E) 2
	(A) 1	(B) -1	(C) 0	(D) 2	(E) -2

		per (cm ⁻¹) for an org	anic molecule conta	aining a carbonyl group in the
infrared spec (A) 3610–36	trum? 640 (B) 2850–3300	(C) 2100–2300	(D) 1690–1760	(E) 1080–1300
effect on tun (A) linkage i	nor therapy. These tw		classified into which	s-Pt(NH ₃) ₂ Cl ₂ showed no ch type of isomerism. ordination isomerism
	g sample of strontiu	m-90 remains after 1		(E) 0.500 mg
(D) 30. Which com (A) NaCl	pound yields the larg (B) MgCl ₂	gest van't Hoff facto (C) MgSO ₄	(i) when dissolved (D) FeCl ₃	l in water? (E) Glucose
	分,共計 120 分,) 題為物理,61~90		分,倒扣至本大 題	[零分為止,未作答,不給分
(A) C_v is ide (B) Molecul (C) C_v of po (D) $C_p > C_v$	nincorrect statement ntical for monatomic ar motion of monator lyatomic ideal gas is in all ideal gases R for monatomic idea	c ideal gases mic ideal gas is zero larger than C _v of mo		
Which of the (A) The prod (B) It occurs (C) Smaller (D) Smaller	$ ightharpoonup C_{graphite}(s)$	orrect statement? C and 1atm	re and pressure	
(B) 63. Determine (A) 3	the number of nodal (B) 2	surfaces for a 3s orb (C) 1	ital. (D) 0	(E) None of these
(A) 64. Which mol (A) NO ⁺	ecule has only one re (B) NO ₂	esonance structure the (C) NO ₃	at obeys the Octet $_1$ (D) O_3	rule? (E) CO ₃ ²⁻
	resonance frequency of 400 MHz? (gyro (B) 200			clear magnetic resonance (E) 1600
(A) Redox p	rocess ortionation reaction	CoCl ₄] ²⁻ and [Co(H ₂ · (B) Spectrochen (D) van't Hoff fa	nical series	rted by which concept?
(C) 67. How many (A) 1	net numbers of spher (B) 2	res are occupied in a (C) 4	face-centered cubi (D) 6	c (f.c.c.) unit cell? (E) 8
	on involving changes on of ln [A] versus ti (B) $m=1/2$			is the reaction order (<i>m</i>) when (E) None of these

109 高點醫護 後西醫考後試題解析【高醫專刊】

 (C) 69. Consider the reaction Fe³⁺(aq) + statements is correct? (A) The equilibrium position shift (B) The equilibrium position shift (C) The equilibrium position shift (D) The equilibrium position shift (E) None of the above is correct 	ts to the right after water is ad ts to the right after $AgNO_3(aq)$ ts to the left after $NaOH(aq)$ is	ded to double the volume) is added s added						
· / •	pounds has the lowest oxidati (B) Phosphorous acid (E) Black phosphorus	on state? (C) Hypophosphorous acid						
(C) 71. How many π electrons are delocated (A) 4 (B) 8	alized in 1,4-diphenyl-1,3-but (C) 16 (D) 24	adiene? (E) 32						
(D) 72. Based on MO theory, which mole (A) O_2^- (B) O_2^+	ecule is not paramagnetic? (C) O_2 (D) N_2	(E) N_2^+						
 (A) 73. Consider mixing equal volume of statement is correct? (A) [H⁺] is less than 0.05 M (C) [H⁺] is 0.1 M 	(A) $[H^+]$ is less than 0.05 M (B) $[H^+]$ is between 0.1 M and 0.05 M							
(C) 74. Which is the major specie for a c $\times 10^{-11}$ for carbonic acid) (A) CO ₂ (B) H ₂ CO ₃								
 (C) 75. What is the main contribution for in water? (A) Random dispersal of water (B) Breaking ordered bonding of (C) Interaction of Li⁺ and F⁻ with (D) Dispersion of Li⁺ and F⁻ into (E) Fast equilibrium 	solids h water molecules	$\Delta S_{soln}^{o} < 0$) when formation of LiF(aq)						
(E) 76. The energy required to remove the electron from a hydrogen atom in its ground state is 2.178×10^{-18} J. What is the energy required to excite the electron in the He ⁺ ion from the n = 1 level to the n = 2 level? (A) 1.634×10^{-18} J (B) 2.178×10^{-18} J (C) 3.268×10^{-18} J (D) 8.712×10^{-18} J (E) None of these								
	(B) decrease the container vol. (D) increase the temperature	ationed below,						
L·atm = 101.3 J) (A) $9.12 \times 10^2 \text{ J}$		a volume of 1.0 L to a volume of 10.0 changes of internal energy (ΔE). (1 (C) -9.12×10^2 J						
	quation can explain redox pote (B) Electrogenerated chemilus (D) Henderson-Hassebalch eq	minescence						

109 高點醫護 後西醫考後試題解析【高醫專刊】

Bı	$r_2(l) \rightarrow Br_2(g)$:	$\Delta H^{\circ} = 31.0 \text{ kJ m}$	he normal boiling p nol ⁻¹ and $\Delta S^{\circ} = 93.0$ (C) 0.30 K		Br_2 at 1 atm. For (E) 433	_
(A) 81. U	Jsing the data s	hown as follows	s to calculate ΔG° fo	,		
Th Fe		$\varepsilon^{\circ} = 0.77 \text{ V}$	$Cu^{2+}(aq)$ and Cu^{2+} are as follows:	ows:		
(A	$(A) -8.3 \times 10^4 \text{ J}$ $(A) -6.0 \times 10^4 \text{ J}$		(B) $-1.2 \times 10^5 \text{ J}$ (E) $-2.4 \times 10^5 \text{ J}$	(C) $-4.2 \times 10^4 \text{ J}$	
			he following statem	ents is (are) tr	rue?	
		: Fe \to Fe ²⁺ + 20 on: O ₂ + 2H ₂ O -				
	I. Moisture serv A) I	ring as a salt bric	dge (B) III	(C) I and II	
	D) I, II, and III		(E) None of the stat		C) I and II	
(E) 83.						
Н	I ₂ N N					
		•	of the Remdesivir (p	otential COV	ID-19 drug), wh	nich of the below
	atements are tru It is an aromati		II. It has 13 σ bond			
III	I. It shows dipo	le moment	IV. It has 11 σ bond	l		
	It contains sp lease choose on	e of the answer l	below,			
•	A) I and IV D) I, II, III, and		(B) II and IV (E) None of these	(C) I, II, and III	
		U 1	e for a solution contactor	aining 18.0 g	of glucose in 150	0.0 g of water at 1
	$(K_b = 0.31)$	C kg/mol for wa (B) 0.06 °C	(C) 0.34 °C	(D) 4.3 °C	(E) 1.8	°C
in		mmol/L in	pressure of 8.0 atm order to provide an	isotonic eyed	rop solution, a s	
	A) 620		(C) 0.62	(D) 327	(E) 79	
fre	•		vater is 74.5 g per 10 ation of CaCl ₂ will b (C) -13	•	•	or water)
(C) 87. I	Determine the v	alue of $K_{\rm c}$ for th	e reaction			
H	X(aq)	$H^+(aq) + X^-(aq)$	aq)	•	0 x 10 ⁻⁴	
		H+(aq) +			0×10^{-6}	
	$HX(aq) + C_2O_4^2$ A) 0.001	(aq) = (aq) (B) 0.01	$2X^{-}(aq) + H_2C_2O_4$ (C) 0.1	(aq) $K_{c} = ?$ (D) 1	(E) 10	
(A	a-deoxy-2-[¹⁸ F]f a) alpha emissic b) photon emiss	on, ¹⁸ O	¹⁸ F]FDG) decays b (B) beta emission, ¹ (E) neutron capture	.9F (nd [¹⁸ F] will yie C) positron emis	

- (A) 89. For an unknown molecules A_2 , if the dissociation energy is 1204 kJ/mol, what is the maximum wavelength of electromagnetic radiation required to rupture this bond? (Planck constant: 6×10^{-34} J.s, light of speed: 3×10^8 m/s)
 - (A) 90 nm
- (B) 120 nm
- (C) 150 nm
- (D) 180 nm
- (E) 210 nm
- (D) 90. Calculate the ratio of the root-mean-square velocities (μ_{rms}) of H_2 to SO_2 .
 - (A) 1
- (B) 0.18
- (C) 32
- (D) 5.6
- (E) 180

【版權所有,翻印必究】

高雄醫學大學

梁傑(梁家榮)老師提供

本次高醫的普通化學試題看似簡單但其實帶有些許鑑別度,如果只是背誦公式、速解,知其然而不知 所以然的同學,會考的不理想,例如第 18 題(p-s mixing)、第 19 題(液晶分子)、第 61 題(理想氣體熱容 量概念)、第62題(鑽石變成石墨的概念)、第82題(鏽蝕原理)等,都是需要較深入探討細節才能寫出 正確答案的考題。第27題和第65題屬於有機化學才會探討的題材,在普化課程沒有提及,但若曾經 修習過有機化學的同學,應該可以拿到這兩題的分數。

第 16 題	第 17 題	第 18 題	第 19 題	第 20 題
判斷酸鹼性	complex 的磁性	s-p mixing	液晶分子結構特色	fcc 晶體中的四面
普化分章(上)	普化分章(上)	普化正課講義		體洞數量
Page 4-37	Page 6-117	Page 6-93		普化正課講義
私醫 93(29)	私醫 100(1)	完全相同		Page 8-64
幾乎相同	完全相同			完全相同
第 21 題	第 22 題	第 23 題	第 24 題	第 25 題
票白水的主要成分	由平均原子量計算	半徑小價數高的酸	自發反應的ΔH、	維他命 B ₁₂ 的中心
普化分章(上)	同位素之原子量	性陽離子	ΔS與T之關係	金屬種類
Page 2-27	普化分章(上)	普化分章(上)	普化分章(下)	普化分章(上)
私醫 104(26)	Page 2-12	Page 4-20	Page 11-40	Page 6-135
完全相同	高醫 108(24)	中國 97(9)	慈濟 104(9)	中國 103(25)
	完全相同	完全相同	完全相同	完全相同
第 26 題	第 27 題	第 28 題	第 29 題	第 30 題
分子軌域理論與鍵	計算金屬晶體密度	Complex 的立體異	一級反應的公式	i值大小比較
級的判斷		構物判斷	普化分章(下)	普化正課講義
普化分章(上)	有機有教	普化正課講義	Page 14-21	Page 9-58
Page 6-86	有機分章(下)	Page 6-111	私醫 97(12)	完全相同
義守 101(24)	Page 14-36	完全相同	完全相同	
幾乎相同	義守 107(17)			
	完全相同			
第 61 題	第 62 題	第 63 題	第 64 題	第 65 題
里想氣體的熱容量	鑽石變成石墨是自	節點數量計算	共振式數量	¹ H 與 ¹³ C 在 NM
概念	發過程	普化正課講義	普化正課講義	上的差異
普化正課講義	普化正課講義	Page 5-59	Page 6-39	
Page 10-59	Page 11-40	完全相同	完全相同	有機有教
觀念相同	觀念相同			有機分章(下)
				Page 14-46
				Page 14-46 高醫 97(33)

第 66 題	第 67 題	第 68 題	第 69 題	第 70 題
化學光譜序列	fcc 單位晶格粒子	一級反應濃度與時	產生沉澱會影響平	氧化數判斷
普化正課講義	數量判斷	間關係	衡反應方向	普化正課講義
Page 6-149	普化分章(上)	普化分章(下)	普化分章(上)	Page 4-41
完全相同	Page 8-29	Page 14-26	Page 4-29	完全相同
	私醫 102(48)	中國 86(16)	慈濟 108(22)	
	完全相同	完全相同	幾乎相同	
第 71 題	第 72 題	第 73 題	第 74 題	第 75 題
共軛系統中電子	MOT 判斷磁性	酸鹼反應後的 pH	特定 pH 值時的溶	ΔS<0 的特殊溶解
數量的計算	普化分章(上)	判斷	質種類判斷	過程
普化正課講義	Page 6-75	普化分章(下)	普化分章(下)	普化分章(下)
Page 6-99	私醫 97(4)	Page 12-22	Page 12-57	Page 10-50
觀念相同	完全相同	中國 99(42)	私醫 106(18)	慈濟 106(17)
		幾乎相同	幾乎相同	完全相同
第 76 題	第 77 題	第 78 題	第 79 題	第 80 題
Bohr 模型計算電	溫度對K值的影響	理想氣體的恆溫	Nernst Equation	液體的沸點計算
子躍遷所需能量	普化總複習	過程	普化正課講義	普化分章(下)
普化分章(上)	Page 11-29	普化分章(下)	Page 13-9	Page 9-21
Page 5-20	UST103A1&A5(21)	Page 10-59	觀念相同	中國 104(25)
高醫 107(66)	完全相同	慈濟 108(26)		完全相同
幾乎相同		完全相同		
第 81 題	第 82 題	第 83 題	第 84 題	第 85 題
$\Delta G = -nFE$	鏽蝕的原理	價鍵理論	依數性質:Tb上升	依數性質:滲透壓
普化分章(下)	普化正課講義	普化分章(上)	普化分章(下)	普化分章(下)
Page 13-4	Page 13-67	Page 6-62	Page 9-50	Page 9-54
慈濟 107(18)	觀念相同	私醫 108(35)	私醫 107(6)	中國 108(11)
完全相同		觀念相同	完全相同	完全相同
第 86 題	第 87 題	第 88 題	第 89 題	第 90 題
依數性質:Tm下降	化學反應方程式	18FDG 的正子放射	AE — hc	氣體的逸散速率
普化分章(下)	與K之關係	普化正課講義	$\Delta E = \frac{1}{\lambda}$	普化分章(上)
Page 9-48	普化分章(下)	Page15-20	普化分章(上)	Page 7-25
私醫 105(25)	Page 11-14	完全相同	Page 5-6	慈濟 102(2)
完全相同	私醫 104(10)		私醫 97(11)	完全相同
	完全相同		完全相同	