110 學年度學士後醫學系招生考試化學試題

Choose one best answer for the following questions

【單選題】每題 1 分，共計 30 分，答錯 1 題倒扣 0.25 分，倒扣至本大題零分為止，未作答，不給分亦不扣分。1～15 題為物理，16～30 題為化學。
（B）16．For the process $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2+}+\mathrm{Cl}^{-} \rightarrow \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}{ }^{+}+\mathrm{NH}_{3}$ ，what would be the ratio of cis to trans isomers in the product？
（A） $1: 1$
（B） $4: 1$
（C） $2: 1$
（D） $1: 4$
（E） $1: 2$
（B）17．Which of the solvents shown below could best dissolve KBr ？
（A） $\mathrm{C}_{6} \mathrm{H}_{14}$（hexane）
（B） $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$（ethanol）
（C） $\mathrm{C}_{6} \mathrm{H}_{6}$（benzene）
（D） CCl_{4}（carbon tetrachloride）
（E） $\mathrm{C}_{6} \mathrm{H}_{12}$（cyclohexane）
（C）18．Which of the following options best describes the relationship between the following two compounds？

（A）Constitutional isomers
（B）Stereoisomers
（C）Identical
（D）Not isomers，different compounds entirely．
（E）Conformers
（D）19．Please calculate the specific heat capacity of a metal if 15.0 g of it requires 169.6 J to change the temperature from $25.00^{\circ} \mathrm{C}$ to $32.00^{\circ} \mathrm{C}$ ？
（A） $0.619 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
（B） $11.3 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
（C） $24.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
（D） $1.62 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
（E） $275 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
（B）20．Which of the following structures contains the central atom which has a formal charge of +2 ？
a． SF_{6}
b． $\mathrm{SO}_{4}{ }^{2-}$
c． O_{3}
d． BeCl_{2}
e． AlCl_{4}^{-}

（A） a
（B） b
（C） c
（D） d
（E）e
（C）21．What is the molecular shape of IF_{3} using the VSEPR theory？
（A）Trigonal bipyramidal
（B）See－saw
（C）T－shaped
（D）Linear
（E）Square pyramidal
（C）22．What are the hybridization state and geometry of the nitrogen atom in the following chemical structure？

（A）$s p$ hybridized and linear geometry
（B）$s p^{2}$ hybridized and trigonal pyramidal
（C）$s p^{3}$ hybridized and trigonal pyramidal
（D）$s p^{3}$ hybridized and trigonal planar
（E）$s p^{3}$ hybridized and bent
（D）23．How many asymmetric carbons are presented in the compound below？

（A） 2
（B） 3
（C） 4
（D） 5
（E） 6
（A）24．The chemical compound＂ethylenediaminetetraacetic acid，EDTA＂is a chelating agent to coordinate several metallic ions，such as ferric，cupper，and calcium ions．In the living organism， which amino acid is usually used as a chelating agent？
（A）Cysteine
（B）Glycine
（C）Leucine
（D）Tryptophan
（E）Proline

送分 25 ．Which one of the following molecules has a dipole moment but without polarity？
（A） O_{3}
（B） PH_{3}
（C） NH_{3}
（D） PCl_{5}
（E） $\mathrm{H}_{2} \mathrm{O}_{2}$
（C） 26 ．Consider the following processes：
$2 \mathrm{~A} \rightarrow(1 / 2) \mathrm{B}+\mathrm{C}$

$$
\Delta H_{1}=5 \mathrm{~kJ} / \mathrm{mol}
$$

$(3 / 2) \mathrm{B}+4 \mathrm{C} \rightarrow 2 \mathrm{~A}+\mathrm{C}+3 \mathrm{D}$
$\Delta H_{2}=-15 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{E}+4 \mathrm{~A} \rightarrow \mathrm{C}$
$\Delta H_{3}=10 \mathrm{~kJ} / \mathrm{mol}$
Calculate ΔH for：$\quad \mathrm{C} \rightarrow \mathrm{E}+3 \mathrm{D}$
（A） $0 \mathrm{~kJ} / \mathrm{mol}$
（B） $10 \mathrm{~kJ} / \mathrm{mol}$
（C）$-10 \mathrm{~kJ} / \mathrm{mol}$
（D）$-20 \mathrm{~kJ} / \mathrm{mol}$
（E） $20 \mathrm{~kJ} / \mathrm{mol}$
（C）27．CdS can be described as cubic closest packed anions with the cations in tetrahedral holes．What fraction of the tetrahedral holes is occupied by the cations？
（A） 0.125
（B） 0.25
（C） 0.50
（D） 0.75
（E） 1.0
（E）28．For the reaction $3 \mathrm{~A}(g)+2 \mathrm{~B}(g) \rightarrow 2 \mathrm{C}(g)+2 \mathrm{D}(g)$ ，the following data was collected at constant temperature．Determine the correct rate law for this reaction．

Trial	Initial［A］ $(\mathrm{mol} / \mathrm{L})$	Initial $[\mathrm{B}]$ $(\mathrm{mol} / \mathrm{L})$	Initial Rate $(\mathrm{mol} /(\mathrm{L} \cdot \mathrm{min}))$
1	0.200	0.100	6.00×10^{-2}
2	0.100	0.100	1.50×10^{-2}
3	0.200	0.200	1.20×10^{-1}
4	0.300	0.200	2.70×10^{-1}

（A）Rate $=k[\mathrm{~A}][\mathrm{B}]$
（B）Rate $=k[\mathrm{~A}][\mathrm{B}]^{2}$
（C）Rate $=k[\mathrm{~A}]^{3}[\mathrm{~B}]^{2}$
（D）Rate $=k[\mathrm{~A}]^{1.5}[\mathrm{~B}]$
（E）Rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$
（C）29．What is the number of the half－lives required for a radioactive element to decay to about 6% of its original activity？（please choose the nearest number）
（A） 2
（B） 3
（C） 4
（D） 5
（E） 6
（C） 30 ．Identify the element of Period 2 which has the following successive ionization energies，in $\mathrm{kJ} / \mathrm{mol}$ ．
$\mathrm{IE}_{1}, 1314$
$\mathrm{IE}_{2}, 3389$
$\mathrm{IE}_{3}, 5298$
IE4， 7471
$\mathrm{IE}_{5}, 10992$
$\mathrm{IE}_{6}, 13329$
IE7， 71345
IE8， 84087
（A） Li
（B） B
（C） O
（D） Ne
（E）None of these

【單選題】每題 2 分，共計 120 分，答錯 1 題倒扣 0.5 分，倒扣至本大題零分為止，未作答，不給分亦不扣分。31～60題為物理，61～90題為化學。
（E）61．Select the answer with the correct number of decimal places for the following sum： $13.914 \mathrm{~cm}+243.1 \mathrm{~cm}+12.00460 \mathrm{~cm}=$
（A） 269.01860 cm
（B） 269.0186 cm
（C） 269.019 cm
（D） 269.02 cm
（E） 269.0 cm
（B）62．Detection of radiation by a Geiger－Müller counter depends on \qquad ．
（A）the emission of a photon from an excited atom
（B）the ability of an ionized gas to carry an electrical current
（C）the emission of a photon of light by the radioactive particle
（D）the ability of a photomultiplier tube to amplify the electrical signal from a phosphor
（E）the detection of the sound made by decay particles
（B）63．Please calculate the ΔS if $\Delta H_{\text {vap }}$ is $66.8 \mathrm{~kJ} / \mathrm{mol}$ ，and the boiling point is $83.4^{\circ} \mathrm{C}$ at 1 atm ，when the substance is vaporized at 1 atm ．
（A）$-187 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
（B） $187 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
（C） $801 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
（D）$-801 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
（E） 0
（C）64．Which of the following values is based on the Third Law of Thermodynamics？
（A）$\Delta H^{\circ}{ }_{\mathrm{f}}=0$ for $\mathrm{Al}(s)$ at 298 K
（B）$\Delta G^{\circ}{ }_{\mathrm{f}}=0$ for $\mathrm{H}_{2}(\mathrm{~g})$ at 298 K
（C）$S^{\circ}=51.446 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$ for $\mathrm{Na}(s)$ at 298 K
（D）$q_{\text {sys }}<0$ for $\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(s)$ at $0^{\circ} \mathrm{C}$
（E）None of these
（A） 65 ．What are the values of bond order belonging to $\mathrm{O}_{2}{ }^{-}$and $\mathrm{O}_{2}{ }^{+}$，respectively？
（A） $1.5,2.5$
（B） $2.5,1.5$
（C）2，3
（D） 3,2
（E） 2,2
（B）66．The lattice energy of $\mathrm{NaI}(s)$ is $-686 \mathrm{~kJ} / \mathrm{mol}$ ，and its heat of solution is $-7.6 \mathrm{~kJ} / \mathrm{mol}$ ．Calculate the hydration of energy of $\mathrm{NaI}(s)$ in $\mathrm{kJ} / \mathrm{mol}$ ．
（A）－678
（B）－694
（C）+678
（D）+694
（E）+15.2
（A） 67 ．According to molecular orbital，which of the following molecules is diamagnetic？
（A） HF
（B） O_{2}
（C） NO
（D） $\mathrm{N}_{2}{ }^{+}$
（E）$\quad \mathrm{N}_{2}{ }^{-}$
（D）68．Consider the figure，which shows ΔG° for a chemical process plotted against absolute temperature．Which of the following is an incorrect conclusion，based on the information in the diagram？

（A）$\Delta H^{\circ}>0$
（B）$\Delta S^{\circ}>0$
（C）The reaction is spontaneous at high temperatures．
（D）ΔS° increases with temperature while ΔH° remains constant．
（E）There exists a certain temperature at which $\Delta H^{\circ}=T \Delta S^{\circ}$ ．
（C） 69 ．Acetone can be easily converted to isopropyl alcohol by addition of hydrogen to the carbon－ oxygen double bond．Calculate the enthalpy of reaction using the bond energies given．

| Bond： | $\mathrm{C}=\mathrm{O}$ | $\mathrm{H}-\mathrm{H}$ | $\mathrm{C}-\mathrm{H}$ | $\mathrm{O}-\mathrm{H}$ | $\mathrm{C}-\mathrm{C}$ | $\mathrm{C}-\mathrm{O}$ |
| :--- | :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| Bond energy（kJ／mol）： | 745 | 436 | 414 | 464 | 347 | 351 |
| （A）-484 kJ （B） -366 kJ （C）-48 kJ
 （D）+48 kJ （E） +366 kJ | | | | | | |

（D）70．How many of the following molecules exhibit resonance： $\mathrm{NO}_{2}^{-}, \mathrm{O}_{3}, \mathrm{OCl}_{2}, \mathrm{NF}_{3}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{CCl}_{4}, \mathrm{CNO}^{-}$， $\mathrm{O}_{2} \mathrm{~F}_{2}$ ？
（A） 1
（B） 2
（C） 3
（D） 4
（E） 5
（B）71．One mole of $\mathrm{X}(\mathrm{g})$ and one mole of $\mathrm{Y}(\mathrm{g})$ are mixed in a closed reactor in the presence of catalysts， and $\mathrm{Z}(g)$ is generated．The reaction is $a \mathrm{X}+b \mathrm{Y} \rightarrow c \mathrm{Z}$ ，where a, b ，and c are the coefficients in the balanced equation．At a certain time，the mixture contains 1.8 moles of gases while the ratio of their partial pressures is $\mathrm{P}_{\mathrm{X}}: \mathrm{P}_{\mathrm{Y}}: \mathrm{P}_{\mathrm{Z}}=7: 9: 2$ ．What are the values of a, b ，and c ？
（A）$a=1, b=2, c=3$
（B）$a=3, b=1, c=2$
（C）$a=7, b=9, c=2$
（D）$a=3, b=1, c=8$
（E）$\quad a=2, b=9, c=7$
（E）72．Consider an adiabatic and reversible expansion process from state I to state II．Which of the following statements is true？
（A） $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
（B） $\mathrm{T}_{1} \mathrm{~V}_{1}{ }^{\gamma}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma}, \gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}$
（C）The final temperature will be higher than the initial temperature．
（D）The final volume of the gas is much greater than the expansion were carried out isothermally．
（E）The work delivered to the surrounding is much smaller than the expansion were carried out isothermally．
（E）73．When a 1.00 mL of the $3.55 \times 10^{-4} \mathrm{M}$ solution of organic acid is diluted with 9.00 mL of ether， forming solution A and then 2.00 mL of the solution A is diluted with 8.00 mL of ether，forming solution B ．What is the concentration of solution B ？
（A） $3.55 \times 10^{-6} \mathrm{M}$
（B） $9.86 \times 10^{-6} \mathrm{M}$
（C） $7.10 \times 10^{-5} \mathrm{M}$
（D） $7.89 \times 10^{-5} \mathrm{M}$
（E） $7.10 \times 10^{-6} \mathrm{M}$
（E）74．What is the volume of $\mathrm{O}_{2}(\mathrm{~g})$ generated when 22.4 g of KClO_{3} is decomposed at $153^{\circ} \mathrm{C}$ under 0.820 atm ？$\left(\mathrm{KClO}_{3}: 122.55 \mathrm{~g} / \mathrm{mol}\right)$
（A） 0.09 L
（B） 3.00 L
（C） 4.20 L
（D） 7.79 L
（E） 11.7 L
（D） 75 ．What is the appropriate representation of the repeating unit of the following polymer？

（I）

（II）

（III）

（IV）

（V）
（A） I
（B）II
（C）III
（D）IV
（E） V
（D）76．Which of the following structures is the major form of the lysine at the $\mathrm{pH}=14$ ？

II

III

IV

V
（A） I
（B）II
（C）III
（D）IV
（E） V
（E）77．Which of the followings is a correct set of quantum numbers for an electron in a $3 d$ orbital？
（A）$n=3, l=0, m_{l}=-1$
（B）$n=3, l=1, m_{l}=3$
（C）$n=3, l=2, m_{l}=3$
（D）$n=3, l=3, m_{l}=2$
（E）$n=3, l=2, m_{l}=-2$
（D）78．Which of the following complexes will absorb visible radiation of the shortest wavelength？
（A）$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
（B）$\left[\mathrm{Co}(\mathrm{I})_{6}\right]^{3-}$
（C）$\left[\mathrm{Co}(\mathrm{OH})_{6}\right]^{3-}$
（D）$\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
（E）$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
（C）79．Please choose the most stable cation？

I

II

III

IV

V
（A） I
（B） II
（C） III
（D）IV
（E） V
（E）80．Which of the following statements about＂The Bohr Model＂and＂Particle in a Box＂is TRUE？
（A）For an electron trapped in a one－dimensional box，as the length of the box increases，the spacing between energy levels will increase．
（B）The total probability of finding a particle in a one－dimensional box（length is L ）in energy level $n=4$ between $x=L / 4$ and $x=L / 2$ is 50% ．
（C）If the wavelength of light necessary to promote an electron from the ground state to the first excited state is λ in a one－dimensional box，then the wavelength of light necessary to promote an electron from the first excited state to the third excited state will be 3λ ．
（D）A function of the type $A \cos (L x)$ can be an appropriate solution for the particle in a one－ dimensional box．
（E）Assume that a hydrogen atom＇s electron has been excited to the $n=5$ level．When this excited atom loses energy， 10 different wavelengths of light can be emitted．
（A）81．Which of the following statements concerning a face－centered cubic unit cell and the corresponding lattice，made up of identical atoms，is incorrect？
（A）The coordination number of the atoms in the lattice is 8 ．
（B）The packing in this lattice is more efficient than for a body－centered cubic system．
（C）If the atoms have radius r ，then the length of the cube edge is $\sqrt{8} \times r$ ．
（D）There are four atoms per unit cell in this type of packing．
（E）The packing efficiency in this lattice and hexagonal close packing are the same．
（A）82．Which of the followings will give a solution with a $\mathrm{pH}>7$ ，but is not an Arrhenius base in the strict sense？
（A） $\mathrm{CH}_{3} \mathrm{NH}_{2}$
（B） NaOH
（C）$\quad \mathrm{CO}_{2}$
（D） $\mathrm{Ca}(\mathrm{OH})_{2}$
（E） CH_{4}
（D）83．Pentane， $\mathrm{C}_{5} \mathrm{H}_{12}$ ，boils at $35^{\circ} \mathrm{C}$ ．Which of the followings is true about kinetic energy，E_{k} ，and potential energy，E_{p} ，when liquid pentane at $35^{\circ} \mathrm{C}$ is compared with pentane vapor at $35^{\circ} \mathrm{C}$ ？
（A）$E_{\mathrm{k}}(g)<E_{\mathrm{k}}(l) ; E_{\mathrm{p}}(g) \approx E_{\mathrm{p}}(l)$
（B）$E_{\mathrm{k}}(g)>E_{\mathrm{k}}(l) ; E_{\mathrm{p}}(g) \approx E_{\mathrm{p}}(l)$
（C）$E_{\mathrm{p}}(g)<E_{\mathrm{p}}(l) ; E_{\mathrm{k}}(g) \approx E_{\mathrm{k}}(l)$
（D）$\quad E_{\mathrm{p}}(g)>E_{\mathrm{p}}(l) ; E_{\mathrm{k}}(g) \approx E_{\mathrm{k}}(l)$
（E）$\quad E_{\mathrm{p}}(g) \approx E_{\mathrm{p}}(l) ; E_{\mathrm{k}}(g) \approx E_{\mathrm{k}}(l)$
（C）84．Five molecules are shown as below．Which one has the highest ionic strength？
（A） $\mathrm{B}(\mathrm{OH})_{3}$
（B） HNO_{3}
（C） $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
（D） CaCO_{3}
（E） BaSO_{4}
（B）85．Hydroxylamine nitrate contains 29.17 mass $\%$ N， 4.20 mass $\% \mathrm{H}$ ，and 66.63 mass $\%$ O．Determine its empirical formula．
（A） HNO
（B） $\mathrm{H}_{2} \mathrm{NO}_{2}$
（C）$\quad \mathrm{HN}_{6} \mathrm{O}_{16}$
（D） $\mathrm{HN}_{16} \mathrm{O}_{7}$
（E） $\mathrm{H}_{2} \mathrm{NO}_{3}$
（B）86．Given the following two standard reduction potentials，

$$
\begin{array}{ll}
\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe} & E^{\circ}=-0.036 \mathrm{~V} \\
\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe} & E^{\circ}=-0.44 \mathrm{~V}
\end{array}
$$

determine for the standard reduction potential of the half－reaction

$$
\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}
$$

（A） 0.40 V
（B） 0.77 V
（C）$\quad-0.40 \mathrm{~V}$
（D）-0.11 V
（E） 0.11 V
（B）87．The rate law for a reaction is found to be Rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$ ．Which of the following mechanisms gives this rate law？
I． $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{E}$（fast） $\mathrm{E}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$（slow）
II． $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{E}$（fast）
$\mathrm{E}+\mathrm{A} \rightarrow \mathrm{C}+\mathrm{D}$（slow）
III． $\mathrm{A}+\mathrm{A} \rightarrow \mathrm{E}$（slow）
$\mathrm{E}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$（fast）
（A） I
（B）II
（C）III
（D）I \＆II
（E）II \＆III
（A）88．When the redox reaction in basic solution： $\mathrm{NO}_{2}^{-}(a q)+\mathrm{Al}(s) \rightarrow \mathrm{NH}_{3}(a q)+\mathrm{AlO}_{2}{ }^{-}(a q)$ is balanced using the smallest whole－number coefficients，the coefficient of $\mathrm{H}_{2} \mathrm{O}$ is x and the sum of all coefficients is y ．What is the sum of x and $y,(x+y)$ ？
（A） 9
（B） 10
（C） 11
（D） 12
（E） 13
（B） 89 ．Which of the followings is the best representation of the titration curve which will be obtained in the titration of a weak acid $\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right)$ with a strong base of the same concentration？
（A）

（B）

（C）

（D）

（E）

（A）90．The students used salicylic acid and acetic anhydride to synthesize aspirin in the experiment of ＂The Preparation of Aspirin＂．The chemical reaction is shown as below：
Which compound will react with FeCl_{3} to become a purple complex？
（A）Salicylic acid
（B）Acetic anhydride
（C）Aspirin
（D）Acetic acid
（E） 18 M sulfuric acid
【版權所有

化 學

解析

16．For the process $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2+}+\mathrm{Cl}^{-} \rightarrow \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}^{+}+\mathrm{NH}_{3}$ ，what would be the ratio of cis to trans isomers in the product？
（A） $1: 1$
（B） $4: 1$
（C） $2: 1$
（D） $1: 4$
（E） $1: 2$

起始物結構上有 4 個 NH_{3} 與 Cl 為 cis 關係
起始物結構上只有 1 個 NH_{3} 與 Cl 為 trans 關係
因此當第二個 Cl 取代其中一個 NH_{3} 時，順式與反式的比例為： $4: 1$

普化正課講義，ch6，page 6－132

For the process $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}+\mathrm{Cl} \longrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}+\mathrm{NH}_{3}$ what would be the ration of cis to trans isomer in the product？
（A） $1: 1$
（B） $1: 2$
（C） $1: 4$
（D） 4 ： 1
（E） $2: 1$
Ans：D

17．Which of the solvents shown below could best dissolve KBr ？
（A） $\mathrm{C}_{6} \mathrm{H}_{14}$（hexane）
（B） $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$（ethanol）
（C） $\mathrm{C}_{6} \mathrm{H}_{6}$（benzene）
（D） CCl_{4}（carbon tetrachloride）
（E） $\mathrm{C}_{6} \mathrm{H}_{12}$（cyclohexane）

Like dissolve like
KBr 最能夠溶解於極性最高的 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ 當中

普化正課講義，ch9，page 9－66
私醫90（18）考過類似考題

（D）Z形（ethal）
4 4 年 90

18．Which of the following options best describes the relationship between the following two compounds？

（A）Constitutional isomers
（B）Stereoisomers
（C）Identical
（D）Not isomers，different compounds entirely．
（E）Conformers

19．Please calculate the specific heat capacity of a metal if 15.0 g of it requires 169.6 J to change the temperature from $25.00^{\circ} \mathrm{C}$ to $32.00^{\circ} \mathrm{C}$ ？
（A） $0.619 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
（B） $11.3 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
（C） $24.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
（D） $1.62 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
（E） $275 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

$$
\begin{aligned}
\Delta H=m \times S \times \Delta T & \Rightarrow 169.6=15 \times S \times(32-25) \\
& \Rightarrow S=1.61 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}
\end{aligned}
$$

普化正課講義，ch10，page 10－21
（b）物筫的恚容量（heat capacity，C）的定気为：
物質的为客量（heat capacity，C）定为为： $\mathrm{C}=\frac{\text { heat absorbed }}{\text { increase in temperature }}$

specific heat capacity	molar heat capacity
the energy required to raise the temperature	the energy required to raise the temperature
of 1 g of a substance by $1^{\circ} \mathrm{C}$	of 1 mol of a substance by $1^{\circ} \mathrm{C}$
莗位 ：$\frac{\mathrm{J}}{\mathrm{K} \cdot \mathrm{g}}$ or $\frac{\mathrm{J}}{{ }^{\circ} \mathrm{C} \cdot \mathrm{g}}$	卓位：$\frac{\mathrm{J}}{\mathrm{K} \cdot \mathrm{mol}}$ or $\frac{\mathrm{J}}{}{ }^{\circ} \mathrm{C} \cdot \mathrm{mol}$

$$
\Delta H=q_{p}=n \times \overline{\mathrm{C}} \times \Delta \mathrm{T} \text { (龍目提供菑平㧴客量) }
$$

20．Which of the following structures contains the central atom which has a formal charge of +2 ？
a． SF_{6}
b． $\mathrm{SO}_{4}{ }^{2-}$
c． O_{3}
d． BeCl_{2}
e． $\mathrm{AlCl}_{4}{ }^{-}$

Cl
1
Be
1
Cl

（A）a
（B） b
（C） c
（D） d
（E） e
$a=0$
$b:+2$
$c:+1$
$d: 0 \quad e:-1$

普化先修，ch0，page 0－45
拫多的分子和多車子敞子常有不同路易士姑構（Lewis structure）形式

Case 03 ：磌醀根 $\left(\mathrm{SO}_{4}{ }^{2}\right.$ ）的林構

可能一：

可㗹二：

使其各原子皆其有量小的形式乗荷

21．What is the molecular shape of IF_{3} using the VSEPR theory？
（A）Trigonal bipyramidal
（B）See－saw
（E）Square pyramidal
（C）T－shaped
（D）Linear

普化分章，page 6－34

（A） NH_{3}
（B）CIF，
（C） SO_{3}
（D） AlCl_{3}

22．What are the hybridization state and geometry of the nitrogen atom in the following chemical structure？
\square

（A）$s p$ hybridized and linear geometry
（B）$s p^{2}$ hybridized and trigonal pyramidal
（C）$s p^{3}$ hybridized and trigonal pyramidal
（D）$s p^{3}$ hybridized and trigonal planar
（E）$s p^{3}$ hybridized and bent

23．How many asymmetric carbons are presented in the compound below？

普化正課，ch16，page 16－44

题整（3）：結棈上丵性中心的数至

(A)2 (B)3 (C)4 (D)5 (E)6

（A） 4
（B） 5
（C） 6
（D） 7

24．The chemical compound＂ethylenediaminetetraacetic acid，EDTA＂is a chelating agent to coordinate several metallic ions，such as ferric，cupper，and calcium ions．In the living organism，
θ which amino acid is usually used as a chelating agent？
（A）Cysteine
（B）Glycine
（C）Leucine
（D）Tryptophan
（E）Proline

（A）

cysteine
（B）
（C）

glycine

leucine

tryptophan

proline
綡棤上的SH

子作用

25．Which one of the following molecules has a dipole moment but without polarity？
（A） O_{3}
（B） PH_{3}
（C） NH_{3}
（D） PCl_{5}
（E） $\mathrm{H}_{2} \mathrm{O}_{2}$

題目應該寫 has a＂bond＂dipole moment but without polarity 才對

26．Consider the following processes：
$2 \mathrm{~A} \rightarrow(1 / 2) \mathrm{B}+\mathrm{C}$
$\Delta H_{1}=5 \mathrm{~kJ} / \mathrm{mol}$
$(3 / 2) \mathrm{B}+4 \mathrm{C} \rightarrow 2 \mathrm{~A}+\mathrm{C}+3 \mathrm{D} \quad \Delta H_{2}=-15 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{E}+4 \mathrm{~A} \rightarrow \mathrm{C}$
$\Delta H_{3}=10 \mathrm{~kJ} / \mathrm{mol}$

Calculate ΔH for：$\quad \mathrm{C} \rightarrow \mathrm{E}+3 \mathrm{D}$
（A） $0 \mathrm{~kJ} / \mathrm{mol}$
（B） $10 \mathrm{~kJ} / \mathrm{mol}$
（C）$-10 \mathrm{~kJ} / \mathrm{mol}$
（D）$-20 \mathrm{~kJ} / \mathrm{mol}$
（E） $20 \mathrm{~kJ} / \mathrm{mol}$

$$
\begin{array}{rlrl}
\frac{3}{2} B+4 C & \rightarrow 2 A+C+3 D & \Delta H_{2} & =-15 \\
C & \rightarrow 4 A+E & -\Delta H_{3}=-10 \\
+ & 6 A & \rightarrow \frac{3}{2} B+3 C & 3 \times \Delta H_{1}=15
\end{array}
$$

$$
C \rightarrow E+3 D \quad \Delta H_{\text {overall }}=-10
$$

27．CdS can be described as cubic closest packed anions with the cations in tetrahedral holes．What fraction of the tetrahedral holes is occupied by the cations？
（A） 0.125
（B） 0.25
（C） 0.50
（D） 0.75
（E） 1.0
anion 以 ccp 方式排列，則單位晶格中含有 4 個 S^{2-}
由於 CdS 陽離子和陰離子數量比為 $1: 1$ ，因此 CdS 單位晶格中也含有 4 個 Cd^{2+}而 CcD 晶格含有 8 個 Td hole，因此只有 50% 的 Td hole填入陽離子

28．For the reaction $3 \mathrm{~A}(\mathrm{~g})+2 \mathrm{~B}(g) \rightarrow 2 \mathrm{C}(g)+2 \mathrm{D}(\mathrm{g})$ ，the following data was collected at constant temperature．Determine the correct rate law for this reaction．

依照題目所給數據可看出：Rate $=k[A]^{2}[B]$

29．What is the number of the half－lives required for a radioactive element to decay to about 6% of its original activity？（please choose the nearest number）
（A） 2
（B） 3
（C） 4
（D） 5
（E） 6

$$
\ln \left(\frac{100}{6}\right)=k \times t=\frac{0.693}{t_{1 / 2}} \times t \Rightarrow t=\frac{\ln \left(\frac{100}{6}\right)}{0.693} \times t_{1 / 2}=4 \times t_{1 / 2}
$$

30．Identify the element of Period 2 which has the following successive ionization energies，in $\mathrm{kJ} / \mathrm{mol}$ ．
$\mathrm{IE}_{1}, 1314$
$\mathrm{IE}_{2}, 3389$
$\mathrm{IE}_{3}, 5298$
IE4， 7471
IEs， 10992
IE 6,13329
IE7， 71345
IEs， 84087
（A） Li
（B） B
（C） O
（D） Ne
（E）None of these

此第二週期元素有特別大的第七游離能，應為 oxygen
普化正課，ch5，page 5－99
（2）主族元素同速期元素之游解能

Elkment	h_{1}	h_{2}	h_{5}	h_{4}	h_{5}	h_{5}	h_{7}	
Na	495	4560						
Mg	735	1445	7730					
Al	580	1815	2740	11,600				
Si	780	1575	3220	4350	16,100			
P	1060	1890	2905	4950	6270	21,200		
S	1005	2260	3375	4565	6950	8490	27,000	
Cl	1255	2295	3850	5160	6560	9360	11,000	
Ar	1527	2665	3945	5770	7230	8780	12,000	

61．Select the answer with the correct number of decimal places for the following sum：
$13.914 \mathrm{~cm}+243.1 \mathrm{~cm}+12.00460 \mathrm{~cm}=$
（A） 269.01860 cm
（B） 269.0186 cm
（C） 269.019 cm
（D） 269.02 cm
（E） 269.0 cm

$$
13.914
$$

$$
243.1
$$

$$
\begin{array}{r}
12.00460 \\
\hline 269.01860
\end{array}
$$

（1）
普化正課，ch1，page 1－27
1.7 C 一般的有效莗字運算

- 艇有效较字的加证理算
- 紋有效数䆘来除莗算

秉除運算纯果由有数位㜞最少的测量耾果泱定有姢位数

$$
\frac{27.8}{11.70}(\text { (三位有效) }=2.3760
$$

$$
\begin{array}{cc}
3.18 & \text { (三位有越) } \\
+0.01315 & \text { (四位有效) } \\
\hline 3.19315 &
\end{array}
$$

62．Detection of radiation by a Geiger－Müller counter depends on \qquad ．
（A）the emission of a photon from an excited atom
（B）the ability of an ionized gas to carry an electrical current
（C）the emission of a photon of light by the radioactive particle
（D）the ability of a photomultiplier tube to amplify the electrical signal from a phosphor
（E）the detection of the sound made by decay particles
路，可用束測量輻射䉺子的数量

普化分章，page 15－26

（A）素连
（B）差莱计珯 B （Geiger counter）
（C）解殓检戌决
（D）娄㢆计

63．Please calculate the ΔS if $\Delta H_{\text {vap }}$ is $66.8 \mathrm{~kJ} / \mathrm{mol}$ ，and the boiling point is $83.4^{\circ} \mathrm{C}$ at 1 atm ，when the substance is vaporized at 1 atm ．
13
（A）$-187 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
（B） $187 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
（C） $801 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
（D）$-801 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
（E） 0

$$
\Delta S_{r a p}=\frac{\Delta H_{v a p}}{T b}=\frac{66.8 \times 10^{3}}{(273+83.4)}=187.4 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mo}
$$

64．Which of the following values is based on the Third Law of Thermodynamics？
（A）$\Delta H^{\circ}{ }_{\mathrm{f}}=0$ for $\mathrm{Al}(s)$ at 298 K
（B）$\Delta G^{\circ}{ }_{\mathrm{f}}=0$ for $\mathrm{H}_{2}(\mathrm{~g})$ at 298 K
（C）$S^{\circ}=51.446 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$ for $\mathrm{Na}(\mathrm{s})$ at 298 K
（D）$q_{s y s}<0$ for $\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(s)$ at $0^{\circ} \mathrm{C}$
（E）None of these
由於 0 K 的完美單晶之 entropy 為零，才能得到 Na 在 298 K 時的絕對熵

普化總複習，page 10－5，TCUS107A（22）考過一樣的題目
22．Which of the following values is based on the Third Law of Thermodynamics？
A．$\Delta H^{\prime \prime} \mathrm{r}=0$ for $\mathrm{Al}(\mathrm{s})$ at 298 K
B．$\Delta G^{\circ}{ }^{\circ}=0$ for $\mathrm{H}_{2}(\mathrm{~g})$ at 298 K
C．$S^{\circ}=51.446 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$ for $\mathrm{Na}(\mathrm{s})$ at 298 K
D．$q_{s p}<0$ for $\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(s)$ at $0^{\circ} \mathrm{C}$
E．None of these choices is correct．
TCUS107A（22）

65．What are the values of bond order belonging to O_{2}^{-}and O_{2}^{+}，respectively？
（A） $1.5,2.5$
（B） $2.5,1.5$
（C）2， 3
（D） 3,2
（E）2，2

	O_{2}^{+}	O_{2}	O_{2}^{-}
价电子缕扜	11	12	13
鍵級	2.5	2	1.5

普化正課，ch6，page 6－96

（A） 1.5
（B） 1.0
（C） 0.5
（D） 2.0

能裙 $107(3) \mathrm{D}$

（A） 1
（B） 1.5
（C） 2
（D） 2.5
（E） 3

（A）-2
（B）-1
（C）+1
（D）+2
6 守 100 （2） C

66．The lattice energy of $\mathrm{NaI}(s)$ is $-686 \mathrm{~kJ} / \mathrm{mol}$ ，and its heat of solution is $-7.6 \mathrm{~kJ} / \mathrm{mol}$ ．Calculate the hydration of energy of $\mathrm{NaI}(s)$ in $\mathrm{kJ} / \mathrm{mol}$ ．
3
（A）-678
（B）-694
（C）+678
（D）+694
（E）+15.2

$$
\begin{aligned}
\Delta H \text { Soln } & =\Delta H_{L E}+\Delta H \text { hyd } \\
-7.6 & =(+686)+\Delta H \text { hyd } \Rightarrow \Delta H / h y d=-693.6 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

普化正課，ch9，page 9－83

The lattice energy of NaI is $-686 \mathrm{~kJ} / \mathrm{mol}$ ，and the enthalpy of bydration is $-694 \mathrm{~kJ} / \mathrm{mol}$ ．Calculate the enthalpy of solution per mole of solide Nal．Describe the process to which this enthalpy change applies．

67．According to molecular orbital，which of the following molecules is diamagnetic？
（A） HF
（B） O_{2}
（C） NO
（D） $\mathrm{N}_{2}{ }^{+}$
（E）$\quad \mathrm{N}_{2}$
O_{2} 是常考的順磁分子
NO， $\mathrm{N}_{2}{ }^{+}$， $\mathrm{N}_{2}{ }^{-}$擁有奇數價電子，必定是順磁分子答案選（A）

普化正課，ch6，page 6－100，中國107（8）考過類似考題
8．下列分子中，幾個與有［頊㺼珄（paramagnetism）？\rightarrow 代码 ：【ta2 xe 】
（a） N_{2}
（b） O_{2}
$\begin{array}{lll}\text {（c）} \mathrm{CO} & \text {（d）} \mathrm{F}_{2}\end{array}$
（e） C^{2+}
（i） $\mathrm{O}_{2}{ }^{2+}$（g） NO^{+}
（b） B^{2-}（i） HF
（j） NO^{-}
（A） 2
（B） 3
（C） 4
（D） 5
（E） 6
中界 $107(\mathrm{~B}) \mathrm{A}$

68．Consider the figure，which shows ΔG° for a chemical process plotted against absolute temperature．Which of the following is an incorrect conclusion，based on the information in the diagram？

（A）$\Delta H^{\circ}>0$
（B）$\Delta S^{\circ}>0$
（C）The reaction is spontaneous at high temperatures．
（D）ΔS° increases with temperature while ΔH° remains constant．
（E）There exists a certain temperature at which $\Delta H^{\circ}=T \Delta S^{\circ}$ ．

由圖可看出當 $\mathrm{T}=0$ 時，$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}>0$ ，（A）正確
當溫度升高，ΔG° 變小，表示 $\Delta S^{\circ}>0$ ，且高溫有利於自發，（B），（C）正確
某特定溫度下，$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}=0$ ，此時 $\Delta H^{\circ}=T \Delta S^{\circ}$ ，（E）正確
由此圖看不出 ΔS° 會隨溫度變化，（D）錯誤

普化正課，ch11，page 11－45

$$
\Delta H^{\circ}<0+\Delta S^{\circ}<0
$$

盢度（T）

$$
\Delta \mathrm{H}^{\circ}>0, \Delta \mathrm{~S}^{\circ}>0
$$

69．Acetone can be easily converted to isopropyl alcohol by addition of hydrogen to the carbon－ oxygen double bond．Calculate the enthalpy of reaction using the bond energies given．

（A）-484 kJ
（B）-366 kJ
（C）-48 kJ
（D）+48 kJ
（E）+366 kJ

$$
\Delta H=(+745)+(+436)+(-414)+(-351)+(-464)=-48
$$

普化分章，ch10，page 10－36，私醫104（23）考過一樣的考題

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

70．How many of the following molecules exhibit resonance： $\mathrm{NO}_{2}{ }^{-}, \mathrm{O}_{3}, \mathrm{OCl}_{2}, \mathrm{NF}_{3}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{CCl}_{4}, \mathrm{CNO}^{-}$， $\mathrm{O}_{2} \mathrm{~F}_{2}$ ？
（A） 1
（B） 2
（C） 3
（D） 4
（E） 5
可畫共振的分子： $\mathrm{NO}_{2}^{-}, \mathrm{O}_{3}, \mathrm{~N}_{3} \mathrm{O}, \mathrm{CNO}$
普化正課，ch，page 6－41
永景：

$[\mathrm{N}-\mathrm{N}-\mathrm{O} \longleftrightarrow \mathrm{N}-\mathrm{N}-\mathrm{O} \longleftrightarrow \mathrm{N}-\mathrm{N}-\mathrm{O}]$
普化正課，ch，page 6－39
（c）

真策共有 \qquad㑭共振式 OO 继的能级（bond order）为 \qquad
（c）

豆确破裉共有 \qquad佨共振式 NO 健的䋖级（bond order）為 \qquad

71．One mole of $\mathrm{X}(\mathrm{g})$ and one mole of $\mathrm{Y}(\mathrm{g})$ are mixed in a closed reactor in the presence of catalysts， and $\mathrm{Z}(g)$ is generated．The reaction is $a \mathrm{X}+b \mathrm{Y} \rightarrow c \mathrm{Z}$ ，where a, b ，and c are the coefficients in the balanced equation．At a certain time，the mixture contains 1.8 moles of gases while the ratio of their partial pressures is $\mathrm{P}_{\mathrm{X}}: \mathrm{P}_{\mathrm{Y}}: \mathrm{P}_{\mathrm{Z}}=7: 9: 2$ ．What are the values of a, b ，and c ？
（A）$a=1, b=2, c=3$
（B）$\quad a=3, b=1, c=2$
（C）$a=7, b=9, c=2$
（D）$a=3, b=1, c=8$
（E）$a=2, b=9, c=7$

$$
\begin{aligned}
& \left.\begin{array}{l}
P_{x}=P_{y}: P_{z}=7=9: 2 \\
n_{x}+n_{y}+n_{z}=1.8 \mathrm{~mol}
\end{array}\right\} n_{x}=0.7, n_{y}=0.9, n_{z}=0.2 \\
& \left.\begin{array}{ccc}
a X+b Y & c Z \\
I: \begin{array}{cc}
1 & 1 \\
C:-3.0 .1 & -1 \cdot 0.1
\end{array} & +2 \times 0.1
\end{array}\right\} a=3, b=1, c=2
\end{aligned}
$$

72．Consider an adiabatic and reversible expansion process from state I to state II．Which of the following statements is true？
（A） $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
（B） $\mathrm{T}_{1} \mathrm{~V}_{1}{ }^{\gamma}=\mathrm{T}_{2} \mathrm{~V}_{2}{ }^{\gamma}, \gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{V}}$
（C）The final temperature will be higher than the initial temperature．
（D）The final volume of the gas is much greater than the expansion were carried out isothermally．
（E）The work delivered to the surrounding is much smaller than the expansion were carried out isothermally．

絕熱可逆過程的壓力與體積之關係為： $\mathrm{P}_{1} \mathrm{~V}_{1} \gamma=\mathrm{P}_{2} \mathrm{~V}_{2}{ }^{\gamma}$ ，（ A ）錯誤
絕熱可逆過程的溫度與體積之關係為：$T_{1} V_{1}{ }^{\gamma-1}=T_{2} V_{2}{ }^{\gamma-1}$ ，（B）錯誤
絕熱可逆膨脹，系統要消耗自己的內能來對外界做功
因此末狀態的溫度較低，體積相對較小，（C），（D）錯誤
由於絕熱可逆膨脹過程達到的末狀態體積相對較小，因此對環境做的功也相對較小，（E）正確

73．When a 1.00 mL of the $3.55 \times 10^{-4} \mathrm{M}$ solution of organic acid is diluted with 9.00 mL of ether， forming solution A and then 2.00 mL of the solution A is diluted with 8.00 mL of ether，forming solution B ．What is the concentration of solution B ？
（A） $3.55 \times 10^{-6} \mathrm{M}$
（B） $9.86 \times 10^{-6} \mathrm{M}$
（C） $7.10 \times 10^{-5} \mathrm{M}$
（D） $7.89 \times 10^{-5} \mathrm{M}$
（E） $7.10 \times 10^{-6} \mathrm{M}$

$$
C_{M}=\frac{\left(3.55 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}} \times \frac{1}{1000} \mathrm{~L}\right) \times \frac{2 \mathrm{~mL}}{(9+1) \mathrm{mL}}}{[(8+2) / 1000 \mathrm{~L}]}=7.1 \times 10^{-6} \mathrm{M}
$$

普化正課，ch4，page 4－32

满 ，則最缓㴖度夺 \qquad。
（A） 1 M
（B）$\frac{5}{2} \mathrm{M}$
（C）$\frac{2}{3} \mathrm{M}$
（D）$\frac{1}{2} \mathrm{M}$

74．What is the volume of $\mathrm{O}_{2}(\mathrm{~g})$ generated when 22.4 g of KClO_{3} is decomposed at $153^{\circ} \mathrm{C}$ under 0.820 atm ？$\left(\mathrm{KClO}_{3}: 122.55 \mathrm{~g} / \mathrm{mol}\right)$
（A） 0.09 L
（B） 3.00 L
（C） 4.20 L
（D）$\quad 7.79 \mathrm{~L}$
（E） 11.7 L

$$
2 \mathrm{kc} \mid \mathrm{O}_{3} \triangle 3 \mathrm{O}_{2}+2 \mathrm{kcl}
$$

$$
V=\frac{n R T}{p}=\frac{\left(\frac{22.4}{122.5} \times \frac{3}{2}\right) \times 0.082 \times(273+153)}{0.820}=11.7
$$

普化正課，ch，page 7－41

A sample of solid potassium chlorate $\left(\mathrm{KClO}_{3}\right)$ was heated in a test tube and decomposed according to the following reaction：

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

The oxygen produced was collected by displacement of water at $22^{\circ} \mathrm{C}$ at a total pressure of 754 torr．The volume of the gas collected was 0.650 L ，and the vapor pressure of water at $22^{\circ} \mathrm{C}$ is 21 torr．Calculate the partial pressure of O_{2} in the gas collected and the mass of KClO_{3} in the sample that was decomposed．

75．What is the appropriate representation of the repeating unit of the following polymer？

D

（I）

（II）

（III）

（V）
（A） I
（B）II
（C）III
（D）IV
（E） V

普化正課，ch16，page 16－23

76．Which of the following structures is the major form of the lysine at the $\mathrm{pH}=14$ ？

I

II

III

IV

v
（A）I
（B）II
（C）III
（D）IV
（E） V

當 $\mathrm{pH}=14$ 時，此時的 pH 都遠大於 lysine 的 pKa
因此 lysine 能展現酸性的部分都會以解離的狀態存在，答案選（D）
普化正課，ch12，page 12－58，慈濟109（49）考過一樣的題目

（A）

（B）

（C）

（D）

8）${ }^{\text {聿 } 109(49)}$

77．Which of the followings is a correct set of quantum numbers for an electron in a $3 d$ orbital？
（A）$n=3, l=0, m_{i}=-1$
（B）$n=3, l=1, m_{I}=3$
（C）$\quad n=3, l=2, m_{I}=3$
（D）$n=3, l=3, m=2$
（E）$n=3, l=2, m_{l}=-2$
E
3 orbital：$n=3, l=2, m_{l}=-2,-1,0,+1,+2 \Rightarrow$ 答案选（E）

普化正課，ch5，page 5－70
Case 03 ：$m_{s} \neq \pm \frac{1}{2}$
下列是原子中 4 d 堂子的四偠量子数 $\left(\mathrm{n}, ~ l, \mathrm{~m}_{6}, \mathrm{~m}_{5}\right)$ ，请间何者正雄？
（A）$(4,2,-1,1 / 2)$
（B）$(4,1,2,1 / 2)$
（C）$(4,2,1,0)$
（D）$(4,1,2,0)$

78．Which of the following complexes will absorb visible radiation of the shortest wavelength？
（A）$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
（B）$\left[\mathrm{Co}(\mathrm{I})_{6}\right]^{3-}$
（C）$\left[\mathrm{Co}(\mathrm{OH})_{6}\right]^{3-}$
（D）$\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
（E）$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
ethylenediamine（en）是所有選項中最強場的配位基，complex吸收最短波長的可見光普化正課，ch6，page 6－138，中國108（19）考過一樣的題目

19．光請化學本列（spectrochemical series）如下：
$\mathrm{F}<\mathrm{Br}^{-}<\mathrm{Cr}<\mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{en}^{2}<\mathrm{NO}_{2}-<\mathrm{CN}^{-}$
下列非一相缚合物吸收的可見光的波長展短？
（A）$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}_{5}\right]^{3+}\right.$
（B）$[\mathrm{Cols}]^{3-}$
（D）$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\right]^{3+}$
（E）$[\mathrm{Co}(\mathrm{en})]^{3+}$
（C）$\left[\mathrm{Co}(\mathrm{OH})_{6}\right]^{3-}$

79．Please choose the most stable cation？

I

II

III

IV

V
（A）I
（B）II
（C）III
（D）IV
（E） V

級數愈高的碳陽離子通常愈穩定
化學先修，page 0－41
（2）超共㭠所速成的影帮

80．Which of the following statements about＂The Bohr Model＂and＂Particle in a Box＂is TRUE？
（A）For an electron trapped in a one－dimensional box，as the length of the box increases，the

Espacing between energy levels will increase．
（B）The total probability of finding a particle in a one－dimensional box（length is L ）in energy level $n=4$ between $x=L / 4$ and $x=L / 2$ is 50% ．
（C）If the wavelength of light necessary to promote an electron from the ground state to the first excited state is λ in a one－dimensional box，then the wavelength of light necessary to promote an electron from the first excited state to the third excited state will be 3λ ．
（D）A function of the type $A \cos (L x)$ can be an appropriate solution for the particle in a one－ dimensional box．
（E）Assume that a hydrogen atom＇s electron has been excited to the $n=5$ level．When this excited atom loses energy， 10 different wavelengths of light can be emitted．
（A）錯誤，當盒子的邊長上升，energy level之間的能量差會變小
（B）錯誤，$n=4$ 時，$x=L / 4$ 到 $x=L / 2$ 之間找到質點的機率為 25%
（C）錯誤

$$
\begin{aligned}
& \text { ground state }\left.\rightarrow\right|^{\text {st }} \text { excited state } \\
& \left.\begin{array}{rl}
\Delta E & =E_{n=2}-E_{n=1} \\
& =\frac{2^{2} h^{2}}{8 m L^{2}}-\frac{1^{2} h^{2}}{8 m L^{2}}=\frac{3 h^{2}}{8 m L^{2}}=\frac{h c}{\lambda} \Rightarrow \lambda=\frac{8 m L^{2} \cdot c}{3 h} \\
\begin{array}{rl}
\Delta \text { st excited state } \rightarrow 3^{r d} \text { excited state }
\end{array} \\
& =E_{n=4}-E_{n=2}^{8 m^{2} h^{2}}-\frac{2^{2} h^{2}}{8 m L^{2}}=\frac{12 h^{2}}{8 m L^{2}}=\frac{h c}{\lambda^{\prime}} \Rightarrow \lambda^{\prime}=\frac{8 m L^{2} \cdot c}{12 h}
\end{array}\right\} \lambda^{\prime}=\frac{1}{4} \lambda
\end{aligned}
$$

（D）錯誤，一維盒中質點的方程式應為：$A \sin \left(\frac{n \pi}{L} x\right)$
（E）正確 $n=5 \rightarrow n=4$ ，$n=5 \rightarrow n=3$ ，$n=5 \rightarrow n=2$ ，$n=5 \rightarrow n=1$

$$
\begin{aligned}
& n=4 \rightarrow n=3-n=4 \rightarrow n=2-n=4 \rightarrow n=1 \\
& n=3 \rightarrow n=2-n=3 \rightarrow n=1 \\
& n=2 \rightarrow n=1
\end{aligned}
$$

普化正課講義，ch5，page 5－45到page 5－49之間的全部內容

81．Which of the following statements concerning a face－centered cubic unit cell and the corresponding lattice，made up of identical atoms，is incorrect？
（A）The coordination number of the atoms in the lattice is 8 ．
（B）The packing in this lattice is more efficient than for a body－centered cubic system．
（C）If the atoms have radius r ，then the length of the cube edge is $\sqrt{8} \times r$ ．
（D）There are four atoms per unit cell in this type of packing．
（E）The packing efficiency in this lattice and hexagonal close packing are the same．
（A）錯誤，fcc配位數為12
普化正課，ch8，page 8－40

82．Which of the followings will give a solution with a $\mathrm{pH}>7$ ，but is not an Arrhenius base in the strict sense？
（A） $\mathrm{CH}_{3} \mathrm{NH}_{2}$
（B） NaOH
（C）$\quad \mathrm{CO}_{2}$
（D） $\mathrm{Ca}(\mathrm{OH})_{2}$
（E） CH_{4}
$\mathrm{CH}_{3} \mathrm{NH}_{2}$ 本身不直接產生 $\mathrm{OH}-$ ，但卻也會使其水溶液 $\mathrm{pH}>7$
普化正課，ch，page 4－67
－注意：三種破検䁷规之間的比欺

83．Pentane， $\mathrm{C}_{5} \mathrm{H}_{12}$ ，boils at $35^{\circ} \mathrm{C}$ ．Which of the followings is true about kinetic energy，E_{k} ，and potential energy，E_{p} ，when liquid pentane at $35^{\circ} \mathrm{C}$ is compared with pentane vapor at $35^{\circ} \mathrm{C}$ ？
D
（A）$E_{\mathrm{k}}(\mathrm{g})<E_{\mathrm{k}}(l) ; E_{\mathrm{p}}(g) \approx E_{\mathrm{p}}(l)$
（B）$\quad E_{\mathrm{k}}(g)>E_{\mathrm{k}}(l) ; E_{\mathrm{p}}(g) \approx E_{\mathrm{p}}(l)$
（C）$E_{\mathrm{p}}(g)<E_{\mathrm{p}}(l) ; E_{\mathrm{k}}(g) \approx E_{\mathrm{k}}(l)$
（D）$\quad E_{\mathrm{p}}(g)>E_{\mathrm{p}}(l) ; E_{\mathrm{k}}(g) \approx E_{\mathrm{k}}(l)$
（E）$\quad E_{\mathrm{p}}(g) \approx E_{\mathrm{p}}(l) ; E_{\mathrm{k}}(g) \approx E_{\mathrm{k}}(l)$

在 pentane 的沸點 $35^{\circ} \mathrm{C}$ 時
液體狀態的分子具有足夠的動能掙脫分子間作用力的束縛變成氣體狀態，此時 $E_{k}(g) \approx E_{k}(l)$
液態分子間距離很近，氣態分子間距離很遠，因此 $E_{p}(g)>E_{p}(l)$
普化正課，ch9，page 9－5

液 $\frac{\text { Enthalpy of Vaporization }}{\text { Enthalpy of Condensation }}$ 栕
$\Delta \mathbf{H}_{\text {vap }}=-\Delta \mathbf{H}_{\text {cond }}$
湾䞟分子薄登的停件：

（2）運動方向正吰

（1）學際遏程是受熱（endothermic）谒程

（3）颁能㑥程是敬想（exodothermic）遇程

84．Five molecules are shown as below．Which one has the highest ionic strength？
（A） $\mathrm{B}(\mathrm{OH})_{3}$
（B） HNO_{3}
（C） $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
（D） CaCO_{3}
（E） BaSO_{4}
$I=\frac{1}{2} \sum C_{M, i} \cdot z_{i}^{2}$
䊒子㳟度 个栍电何
離子濃度較高或離子電荷較大者，有較大的離子強度（ionic strength）
普化總複習，page 9－50，曾經提醒過 ionic strength 的概念

（34）唃子強度

29．Which of the following aqueous solutions should demonstrate the most ideal behavior？
（A） $0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$
（B） $0.1 \mathrm{M} \mathrm{CaCl}_{2}$
（C） 3.0 MLiF
（D） $0.1 \mathrm{M} \mathrm{MgSO}_{6}$

85．Hydroxylamine nitrate contains 29.17 mass $\% \mathrm{~N}, 4.20$ mass $\% \mathrm{H}$ ，and 66.63 mass $\% \mathrm{O}$ ．Determine its empirical formula．
B
（A） HNO
（B） $\mathrm{H}_{2} \mathrm{NO}_{2}$
（C） $\mathrm{HN}_{6} \mathrm{O}_{16}$
（D） $\mathrm{HN}_{16} \mathrm{O}_{7}$
（E） $\mathrm{H}_{2} \mathrm{NO}_{3}$

由名稱就可以看出 hydroxylamine nitrate $=\left(\mathrm{H}-\mathrm{N}_{\mathrm{H}}^{\mathrm{N}}-\mathrm{OH}\right)\left(\mathrm{NO}_{3}^{-}\right)=\mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}=\left(\mathrm{H}_{2} \mathrm{NO}_{2}\right)_{2}$
普化正課，ch2，page 2－28，義守109（17）曾經考過一樣的考題

（A） $\mathrm{NH}_{2} \mathrm{O}$
（B） $\mathrm{N}_{2} \mathrm{H}_{4} \mathrm{O}_{4}$
（C） NiHOO_{3}
（D） $\mathrm{N}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$

党守 $10 \%(17) 8$

86．Given the following two standard reduction potentials，

$$
\begin{array}{ll}
\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe} & E^{\circ}=-0.036 \mathrm{~V} \\
\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe} & E^{\circ}=-0.44 \mathrm{~V}
\end{array}
$$

determine for the standard reduction potential of the half－reaction

$$
\begin{aligned}
& \mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+} \\
& \begin{array}{llll}
\text { (A) } 0.40 \mathrm{~V} & \text { (B) } 0.77 \mathrm{~V} & \text { (C) }-0.40 \mathrm{~V} & \text { (D) }-0.11 \mathrm{~V}
\end{array} \\
& \\
& E=\frac{(-0.036) \times 3+(0.44) \times 2}{(-0.777 \mathrm{~V}} 0
\end{aligned}
$$

普化正課，ch13，page 13－45，類似義守99（10）
10．已知 $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+} \quad \mathrm{E}^{\circ}=0.15 \mathrm{~V} ; \mathrm{Cu}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu} \quad \mathrm{E}^{0}=0.52 \mathrm{~V}$－

（A） 0.67 V
（B） 0.34 V
（C）-0.37 V
（D）-0.67 V

反㡺方程式	半赏池电位	$\Delta \mathrm{G}^{0}$
$\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}$	$\mathrm{E}_{1}=+0.15$	$\Delta \mathrm{G}_{1}{ }^{0}=-1 \times \mathrm{F} \times(+0.15)$
$\mathrm{Cu}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}$	$\mathrm{E}_{2}=+0.52$	$\Delta \mathrm{G}_{2}{ }^{0}=-1 \times \mathrm{F} \times(+0.52)$
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$	$\mathrm{E}_{3}=?$	$\Delta \mathrm{G}_{3}{ }^{0}=-2 \times \mathrm{FxE}$

87．The rate law for a reaction is found to be Rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$ ．Which of the following mechanisms gives this rate law？
B
I． $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{E}$（fast）
II． $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{E}$（fast）
III． $\mathrm{A}+\mathrm{A} \rightarrow \mathrm{E}$（slow）
$\mathrm{E}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$（slow）
$\mathrm{E}+\mathrm{A} \rightarrow \mathrm{C}+\mathrm{D}$（slow）
$\mathrm{E}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$（fast）
（A）I
（B）II
（C）III
（D）I \＆II
（E）II \＆III

$$
k_{1}[A][B]=k_{-1}[E] \Rightarrow[E]=\frac{k_{1}}{k_{1}-1}[A][B]
$$

$$
R_{\text {ate }}=k_{2}[E][A]=k_{2}\left(\frac{k_{1}}{k_{-1}}[A][B]\right)[A]=\frac{k_{k} k_{2}}{k_{-1}}(A)^{2}(B)
$$

普化總複習，ch14，page 14－38，UST106A7（19）曾經考過一樣的考題
19．The rate law for a reaction is found to be Rate $=k[A]^{2}[B]$ ．Which of the following mechanisms gives this rate law？

I． $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{E}$（fast）
$\mathrm{E}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$（slow）
II． $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{E}$（fast）
$\mathrm{E}+\mathrm{A} \rightarrow \mathrm{C}+\mathrm{D}$（slow）
III． $\mathrm{A}+\mathrm{A} \rightarrow \mathrm{E}$（slow）
$\mathrm{E}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$（fast）
（A） 1 only（B）II only（C）III（D）two of these（E）none of these

88．When the redox reaction in basic solution： $\mathrm{NO}_{2}^{-}(a q)+\mathrm{Al}(s) \rightarrow \mathrm{NH}_{3}(a q)+\mathrm{AlO}_{2}^{-}(a q)$ is balanced using the smallest whole－number coefficients，the coefficient of $\mathrm{H}_{2} \mathrm{O}$ is x and the sum of all coefficients is y ．What is the sum of x and $y,(x+y)$ ？
（A） 9
（B） 10
（C） 11
（D） 12
（E） 13

平衡的方程式： $\mathrm{H}_{2} \mathrm{O}+\mathrm{OH}^{-}+\mathrm{NO}_{2}^{-}+2 \mathrm{Al} \longrightarrow \mathrm{NH}_{3}+2 \mathrm{AlO}_{2}^{-}$
普化正課，ch，page 4－57，UST105A1（3）曾經考過類似考題
3．The reaction below occurs in basic solution．In the balanced equation，what is the sum of the coefficients？ $\mathrm{Zn}+\mathrm{NO}_{3} \rightarrow \mathrm{Zn}(\mathrm{OH})_{4}^{2-}+\mathrm{NH}_{3}$ （A） 12 （B） 15 （C） 19 （D） 23 （E） 27

$\mathrm{Ans}: 4 \mathrm{Zn}+\mathrm{NO}_{3}^{-}+7 \mathrm{OH}^{-}+6 \mathrm{H}_{3} \mathrm{O} \rightarrow 4 \mathrm{Zn}(\mathrm{OH}) 4^{2-}+\mathrm{NH}_{3}$

89．Which of the followings is the best representation of the titration curve which will be obtained in the titration of a weak acid $\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right)$ with a strong base of the same concentration？
B
（A）

（B）

（C）

（D）

（E）

強䅼滴定弱酸時，當量點的 $\mathrm{pH}>7$ ，只有（B）較符合
普化正課，ch 12，page 12－79

90．The students used salicylic acid and acetic anhydride to synthesize aspirin in the experiment of ＂The Preparation of Aspirin＂．The chemical reaction is shown as below：
A Which compound will react with FeCl_{3} to become a purple complex？
（A）Salicylic acid
（B）Acetic anhydride
（C）Aspirin
（D）Acetic acid
（E） 18 M sulfuric acid

具有 phenolic structure 者，可在 FeCl_{3} 溶液中展現紫色，稱為 ferric chloride test

acetic anhydride
salicylic acid
（C）

有機分章，page 15－40，類似私醫93（50）考的觀念

（D）其为一极椗粯

州解析：

